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Abstract— Many organizations nowadays have multiple sites
at different geographic locations. Typically, transmitting massive
data among these sites relies on the interconnection service
offered by ISPs. Segment Routing over IPv6 (SRv6) is a new
simple and flexible source routing solution which could be
leveraged to enhance interconnection services. Compared to tra-
ditional technologies, e.g., physical leased lines and MPLS-VPN,
SRv6 can easily enable quick-launched interconnection services
and significantly benefit from traffic engineering with SRv6-TE.
To parse the SRv6 packet headers, however, hardware support
and upgrade are needed for the conventional routers of ISP.
In this paper, we study the problem of SRv6 incremental deploy-
ment to provide a more balanced interconnection service from a
traffic engineering view. We formally formulate the problem as
an SRID problem with integer programming. After transforming
the SRID problem into a graph model, we propose two greedy
methods considering short-term and long-term impacts with
reinforcement learning, namely GSI and GLI. The experiment
results using a public dataset demonstrate that both GSI and GLI
can significantly reduce the maximum link utilization, where GLI
achieves a saving of 59.1% against the default method.

Index Terms— SRv6, traffic engineering, reinforcement
learning.

I. INTRODUCTION

NOWADAYS, it is common that big organizations or
companies have many subsidiaries, and each subsidiary

has its own private local area network (LAN). To share
information and communicate with each other more easily,
these organizations have to connect their geo-distributed LANs
together. Fig. 1 gives an example where four branch offices of
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Fig. 1. An example to show the demand of interconnection service.

an organization reside in different geo-locations. One easiest
way to accomplish this goal is to connect these LANs to
the public Internet and assign them public IP addresses.
However, this method exposes the private network to the pub-
lic. Some organizations, e.g., bank and defense departments,
have special security considerations and hope to isolate their
private data [1], [2]. To solve this problem, Internet Ser-
vice Providers (ISPs) have provided the following alternative
methods.

The first method is using physical leased lines to connect
the required LANs directly. Though this method can provide
the highest security level and performance, renting physi-
cal lines can be prohibitively expensive for customers [3].
The second method is using network technologies to build
a virtual circuit in public networks. For example, ISPs usually
use multi-protocol label switching (MPLS) to create a virtual
private network (VPN) in public networks. Though MPLS
is cheaper than renting physical lines and can also provide
good performance through traffic engineering, it needs to
distribute many labels to switch devices and maintain many
state variables [4]. Another method is using encapsulation
technologies, e.g., GRE [5] and IPSec [6], which add headers
to the payloads from a customer’s LAN such that they can be
recognized and forwarded in public networks. Compared with
MPLS, encapsulation technologies do not need to maintain
states in the network and are easy to implement. However,
encapsulation technologies usually rely on the best effort
routing protocol, which is not friendly to traffic engineering.

Along with the worldwide deployment of IPv6, the afore-
mentioned interconnection technologies are expected to adapt
to the new data plane, which leads to the birth of IPv6-only
MPLS [7] and IPv6 with IPSec [8]. On the other hand, the new
data plane also calls for new interconnection technologies,
which leads to the birth of Segment Routing over IPv6
(SRv6) [9]. The key idea of segment routing is to break up
the routing path into multiple segments in order to enable
better network utilization. The segments are represented by
labels, which can be attached to packet headers. The details
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of SRv6 will be left in Sec. II. Here, we just show how
to leverage SRv6 to connect isolated sites across an ISP
network which is composed of access networks and a trans-
port backbone network. As shown in Fig. 1, PE 1, PE 2,
PE 3 and PE 4 represent the border routers of the access
network. Site-B wants to send its packets to site-C crossing
an IPv6 transport backbone network. With SRv6, the packets
from site-B will be encapsulated with two kinds of headers
in PE 2, i.e., an IPv6 header and a segment routing header
which includes a segment list. Note that the encapsulated
packets could be forwarded by ordinary IPv6 routers since
they contain IPv6 headers. Thus, this encapsulation could
connect the sites successfully. Supporting traffic engineering
by segment lists is the biggest benefit of SRv6, which differs
from traditional encapsulation technologies. The SRv6-BE
strategy which means forwarding the SRv6 packets with the
best effort could accomplish the interconnection tasks [10].
Nevertheless, the network sometimes can be congested, and we
need to reroute the flows to relieve the congestion. In Fig. 1,
we can steer the packets along the red path or blue path with
a segment list to balance the traffic.

One benefit of SRv6 is that we could easily set up
a new routing path for each flow by combining several
segments, which is the so-called SRv6-Traffic Engineering
(SRv6-TE) [9]. Since only SRv6-enabled routers can parse
segment lists, network operators need to upgrade their devices
to support SRv6. However, as it happens with most novel
network protocols and architectures, a “hard” transition from
a pure IPv6 network to a full SRv6 network at once is
nearly impossible due to the typically huge number of
routers [11]. Hence, a “soft” transition, i.e., upgrading a
sub-set of IPv6 routers, is what can be expected. Usually,
operators upgrade their networks in traffic engineering view,
which means that the network could be utilized as much as
possible [11]–[13]. It remains an open problem that what the
best practices are to upgrade the SRv6 network incrementally
with the limit of the maximum number of upgradeable routers.
In this paper, we devote to studying this “soft” transit problem,
i.e., SRv6 Incremental Deployment problem (SRID). In detail,
given a candidate router list and the maximum number of
upgradeable routers, we need to decide which routers should
be upgraded to accomplish the optimal traffic engineering
goal? After upgrading the related routers, we still need to
decide how to generate routing paths for flows to accomplish
the optimal traffic engineering goal?

In reality, the network topology and the number of flows can
be much larger, which leads to a huge space of SRv6 incre-
mental deployment solutions. This paper aims to design effi-
cient methods to solve the SRID problem. We make the
following contributions:

• We formally define the SRID problem and formulate it
with integer programming. We also prove that the SRID
problem is NP-hard.

• We transform the SRID problem into a graph model
and then give a polynomial-time greedy algorithm named
GSI, which focuses on short-term impact.

• We design a method focusing on long-term impact (GLI),
which leverages reinforcement learning to solve the SRID
problem from an end-to-end perspective. This framework

Fig. 2. An example to show interconnection service provided by SRv6.
The IPv6 addresses of the three routers are 2001::1, 2001::2 and 2001::3,
respectively.

could be trained with small-scale problem instances and
then be applied to large-scale ones.

• We investigate the performance of our methods under
different parameter settings. With extensive experiments,
we demonstrate that both GSI and GLI methods can
significantly reduce the link utilization, with the GLI
method cutting down the maximum link utilization by
59.1% against the default shortest path routing method.

The rest of the paper is structured as follows. In Section II,
we introduce the background of SRv6 and review the related
works. We formulate the SRID problem with integer pro-
gramming in Section III. We design the GSI method in
Section IV and the GLI method in Section V. Section VI
presents performance evaluations on the proposed methods and
sensitivity analysis to the parameter settings. Section VII gives
some further discussion and Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Segment Routing Over IPv6

The key idea of segment routing is to break up the routing
path into segments in order to enable better network utilization.
There are two methods to implement segment routing, i.e., SR-
MPLS and SRv6. Compared to SR-MPLS, SRv6 has many
more special characteristics and benefits [14]. In this paper,
we concern about segment routing over IPv6 data plane. Fig. 2
gives an illustrative example of SRv6. Initially, to transmit the
IPv4 payload from Site-B to Site-C, Router 1 will encapsulate
the packet with an IPv6 header where Router 1 and Router 3’s
IPv6 address will act as the source address and the destination
address, respectively. Then the packet could be transmitted
in the IPv6 network in a best-effort way. As a comparison,
SRv6 will add an extra header between IPv6 header and
IPv4 payload, i.e., segment routing header (SRH). There are
two key field types in SRH: segment left denoting the current
activated segment and segment lists denoting segments. With
SRH, the packet could be routed along an expected path.
When Router 1 receives the packet from Site-B, it will add
two segments into SRH as shown in Fig. 2. Since the value
of the segment left field equals 1, the segment list [1] will
be activated and be copied into the destination address field,
and then the packet will be forwarded to Router 2 along the
best-effort path between Router 1 and Router 2. It should be
emphasized that there may be multiple routers along the path
between Router 1 and Router 2. If the routers do not support
SRv6, they will forward the packet according to the destination
address. If the routers can parse SRH, since they are not the
destination of the packet, they will still forward the packet
according to the destination address. When Router 2 receives
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Fig. 3. Classification of works about leveraging SR in traffic engineering.

the packet, it will decrease the value of the segment left field
to zero and activate segment list [0] and then forward it toward
2001::3. Finally, when the packet reaches Router 3, it will be
decapsulated since the value of the segment left field is zero
and then forwarded to Site-C.

From the above illustration, we can know that SRv6 can
bring two main functions to interconnection service. Firstly,
SRv6 can build tunnels among the sites by encapsulation.
Secondly, SRv6 can steer the flow along the selected paths to
some extent, which can be leveraged to do traffic engineering.
In fact, the combination of segments can represent any path.
However, too many segments will incur extra header costs.
Actually, some related works exposed that 2-segment routing
could provide performance as nearly good as n-segments in the
view of traffic engineering [15], [16]. Therefore in this paper,
we primarily focus on 2-segment routing where the routing
path for a flow will be composed of at most two segments.1

B. Work Related to This Paper

In most cases, the migration to new network protocols and
architectures cannot be finished at once. In [17], the authors
proposed an incremental deployment solution for IPv6 over
IPv4. SDN is also no exception to the concept of incremental
deploying. In [11], the authors studied the SDN incremental
upgrading problem that is devoted to figuring out which router
should be upgraded. Their solution was made in the preference
of empowering advanced traffic engineering. Our work applies
this migration rule into the SRv6 network with the hope to
provide better network interconnection service from a traffic
engineering view.

Existing literature about leveraging segment routing in traf-
fic engineering includes two categories: full SR domain and
partially deployed SR, as shown in Fig. 3.

Traffic engineering in full SR domain: The works in
this category require that all the concerned nodes support
segment routing. Bhatia et al. used integer linear programming
to model 2-segment routing in traffic engineering, where
any logical path contains one middlepoint and thus two
segments [15]. To quickly react to unexpected traffic changes
and failures, Hartert et al. proposed a new approach based on
local search [18]. In [19], the authors proposed an algorithm
based on column generation to solve the large-scale linear
problems with guaranteeing the theory gap bound. In [16],
the authors evaluated segment routing mechanism to do traffic
engineering in real-world topologies and traffic demands.

1Actually, the graph model in Sec. IV-A indicates that our model could be
easily extended to the n-segments case. This part is discussed in Sec. VII.

They also pointed out that 2-SR could be near-optimal as
far as minimizing link utilization and additional intermediate
segments are not profitable for basic SR.

The combination of SDN and SR can improve the effi-
ciency of traffic engineering. In [20], the authors used the
SDN controller to accomplish an online energy-efficient traffic
engineering method that dynamically adapts the number of
powered-on links to the traffic load. Literature [21] lever-
aged SR and SDN to provide bandwidth-guaranteed paths as
well as minimize the possibility of rejecting traffic demands.
Renaud et al. built a system named DEFO which combines the
declarativity of SDN and expressiveness of SR to optimize the
traffic transmission in large-scale carrier network [22].

Traffic engineering in partially deployed SR domain: It is
necessary to consider backward compatibility when deploying
new network technologies in a production environment, e.g.,
SDN, IPv6 and SR. In [12], the authors first focused on the
incremental deployment of an SR-MPLS network. In their
work, they proposed to embed several SR domains into the
network and leveraged encapsulation to guarantee the proper
routing between SR domain and normal IP routers. In the
SR-MPLS network, if the path between two routers covers
one or more SR domain, then the packet would follow the
IP rules when it traverses within the IP domain, while it is
encapsulated into an SR packet every time it crosses an SR
domain. However, when the SR network uses IPv6 as its data
plane, additional encapsulation will never be used due to that
both SRv6-enabled routers and non-SRv6 routers can forward
the packet under the same packet header definition. In [23],
the authors proposed an architecture for SRv6 network and
designed a series of southbound APIs. In this paper, we focus
on how to incrementally deploy SRv6-enabled routers into the
legacy network from a traffic engineering view, i.e., minimiz-
ing the maximum link utilization under the constraint of a
limited number of SRv6 routers.

As the most relevant work to ours, Tian et al. [13] studied
the problem of optimizing link weights in a partially deployed
SRv6 network to minimize the most congested links. They
first leveraged three different heuristic rules to enable the
SRv6 nodes and then leveraged a method based on reinforce-
ment learning to adjust the link weights and recalculate the
routing paths. However, the method of adjusting OSPF link
weights may influence the routing paths of background traffic,
which may have different optimality criteria [24]. In this work,
we leverage SRv6 to combine the shortest paths built by the
default OSPF to do traffic engineering, which can be seen
as an overlay routing [25]. With this routing mechanism in
consideration, we study the incremental deployment problem
of SRv6 for providing better network interconnection service.

III. PROBLEM FORMULATION

A. Problem Illustration

Fig. 4 gives a simple example to illustrate the SRID
problem. As shown in Fig. 4, there are seven nodes
{A, B, C, D, E, F, G} in the transport network and three flows
{f1, f2, f3}. Each flow fi can be represented by a three-
tuple (si, di, λi) in which si, di and λi denote flow source,
flow destination and flow size, respectively. Without loss of
generality, we assume that each flow has an unit size, then
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Fig. 4. Three routing solutions with different maximum link utilization using different numbers of SRv6-enable routers. The two-tuple near each edge
represents (cost, bandwidth).

f1 = {A, G, 1}, f2 = {C, G, 1} and f3 = {B, F, 1}. Each
link in the network has a two-tuple attribute (we, ce) in which
we represents the link cost and ce represents the link capacity.
Fig. 4(a) shows the case that when all flows traverse along
the shortest paths, then the maximum link utilization will be
(1+1+1)/3 = 100%. As shown in Fig. 4(b), if the node D is
upgraded to enable SRv6, then we can first steer f2 to D then
to E. In this example, the shortest path between C and D only
occupies one link, i.e., eCD. Also, the link eDE is the shortest
path connecting D and E. As a result, the maximum link
utilization in Fig. 4(b) is (1 + 1)/3 = 66.6%. Similarly, when
node E is also upgraded to enable SRv6, we can steer f3 to
E before G. In this case, the maximum link utilization will be
1/3 = 33.3%. From the above example, we can easily find that
the number of SRv6 enabled nodes and their locations have
great impacts on minimizing the maximum link utilization.

From the above example, we can define our SRv6-enabled
Router Incremental Deployment problem (SRID) as follows.

Definition 1: Given a transport network G = (V, E, W, C)
and multiple flows {f1, f2, . . . , fn}. Each flow can be routed
along the shortest path between its source and destination or
using 2-segments routing. Assume that there is a candidate
router set H and at most γ routers can be upgraded as
SRv6-enabled routers, then the SRID problem is to decide
which nodes should be upgraded such that the maximum link
utilization of all links is minimized.

To solve the SRID problem, we must decide: (i) How
many routers should be upgraded? (ii) Where to deploy these
SRv6 enabled routers? (iii) How to assign routings to all the
flows such that the maximum link utilization of all links is
minimized?

B. Problem Model

To ease the presentation, we list the notation in Table II. It is
noted that each segment can leverage ECMP naturally [15].
That is, when there are multiple shortest paths in one seg-
ment, the flows will be divided evenly into these paths. Let
SP (vi, vj) represent the set of shortest paths between vi and
vj . For any edge ∀emn ∈ E, it may occur several times in
SP (vi, vj). We use πiemn to denote the amount of traffic
on link emn when unit flow fi is routed along the shortest
path between its source and destination. To calculate πiemn ,
we need to count how many times emn occur in SP (si, di),
which could be denoted by |esidi

mn |. Then we can get

πiemn =
|esidi

mn |
|SP (si, di)| , ∀emn ∈ E, ∀fi, (1)

TABLE I

SUMMARY OF NOTATIONS

where |SP (si, di)| denotes the cardinality of the set
SP (si, di). πiemn will be fractional if ECMP is used.
If the flow fi uses 2-segment routing with an intermediate
SRv6 router vk, then we can use variable πvk

iemn
to denote

the amount of traffic on link emn. It can be calculated as
follows

πvk

iemn
=

|esivk
mn |

|SP (si, vk)|+
|evkdi

mn |
|SP (vk, di)| , ∀emn∈E, vk ∈H, fi.

(2)

Specially, to unify the representation, we add a virtual
SRv6 router H0 into the network and let H ′ = H

⋃{H0}.
When a flow uses H0 as its intermediate node, it means
that the flow will be routed along the default shortest path,
i.e., πH0

iemn
= πiemn . We use a binary variable xik to

denote whether fi is routed through vk, i.e., an intermediate
SRv6 router. The variable θ represents the maximum link
utilization, then we have∑

fi

∑
vk∈H′

πvk

iemn
λixik ≤ θcmn, ∀emn ∈ E. (3)

To make sure that all flows are delivered to their destina-
tions, we have ∑

vk∈H′
xik = 1, ∀fi. (4)
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We use a binary variable ωk to denote whether node vk is
selected and upgraded to SRv6 router. Then we have

xik ≤ ωk, ∀fi, ∀vk ∈ H. (5)

Definition 1 imposes that there are at most γ nodes that can
be upgraded as SRv6 routers. To make our model more general
which can be applied in the different stages of incremental
deployment, we assign a binary variable hk to denote whether
node vk has already been upgraded in previous stages. Thus,
we have ∑

vk∈H

ωk × (1 − hk) ≤ γ. (6)

With the aforementioned constraints in mind, we can model
the SRID problem with Integer Linear Programming (ILP) as
follows,

(ILP ) min
xik,ωk

θ (7a)

s.t. (1) − (6). (7b)

C. Complexity Analysis

To prove that our SRID problem is NP-hard, we first give
the definition of a classic NPC problem, i.e., the subset sum
problem [26]:

Definition 2: Given a set of integers W =
{w1, w2, . . . , wm}, the subset sum problem is to decide
whether there exists a subset A � W such that

∑
A =

�
W
2 .

Theorem 1: The SRID problem formulated in Model (7) is
NP-hard.

Proof: Assume that there is a subset sum instance, e.g.,
W = {w1, w2, . . . , wm}, we could construct an instance of
the SRID problem from this subset sum problem instance.
As shown in Fig. 5, there are nine nodes. The links related
to node M are bidirectional while others are unidirectional.
The two-tuple attached to each link represents its weight
and capacity in which M � ∑

W . There are k flows,
i.e., (A, G, w1), (A, G, w2), . . ., (A, G, wk), needed to be
transmitted from A to G. Also, there are another n− k flows
needed to be transmitted from B to H , i.e., (B, H, wk+1),
(B, H, wk+2), . . ., (B, H, wm). Also, G and H can be selected
as SRv6-enabled routers. This means that the flows that hope
to visit G can be first steered to H and vice versa.

At beginning, the flows would be routed along the shortest
path. Thus, all the flows from A will route along A →
C → E → G and all the flows from B will route along
B → D → F → H . Then the maximum link utilization will

be max(
�k

i=1 wi�
W ,

�m
i=k+1 wi�

W ). If we could make G and H
support SRv6, then we could steer some flows between A and

G through H using 2-segments routing, i.e., A
D,F,H,M−−−−−−→ G.

Similarly, flows between B and H could route through G
with 2-segments routing. Finally, if we could solve the SRID
problem in the constructed example optimally, then we could
solve the subset sum problem. If the link utilization of eCE

and eDF are 50%, then the answer to the subset problem
is yes, otherwise not. However, the subset problem is NPC,
which shows that the SRID problem is also NP-hard. Thus,
Theorem 1 is proved.

Fig. 5. An illustrative SRID example originated from subset sum problem.

Fig. 6. Rethinking the SRID problem from the graph model view.

IV. SOLUTION I: GREEDY WITH SHORT-TERM IMPACT

The example in Fig. 4 shows that the number of candidate
SRv6 nodes and their locations play key roles in our SRID
problem. Theorem 1 indicates that we cannot find the optimal
solution in polynomial time. Thus, we propose to find the
solution in a sequential way that decides the SRv6 nodes
one by one without violating the constraints. In this section,
we first transform the SRID problem from the graph theory
view and then give a greedy algorithm.

A. Model Transformation

Dividing both sides of Equation (3) with cmn, then we will
get ∑

i

∑
vk∈H′

πvk

iemn
λixik

cmn
≤ θ, ∀emn ∈ E. (8)

Let vector variable �uik = {π
vk
iemn

λi

cmn
|∀emn ∈ E}, then

Equation (8) could be rewritten as

||
∑

i

∑
vk∈H′

�uikxik||∞ ≤ θ. (9)

Then the model (7) is equal to

min
xik,ωk

||
∑

i

∑
vk∈H′

�uikxik||∞ (10a)

s.t. (1), (2), (4), (5), (6). (10b)

The above model can be reviewed from a graph model view.
As shown in Fig. 6, there are m nodes on top representing
the source nodes of flows and |H | = l nodes on the bottom
representing the candidate routers. Ol represents the virtual
router. Each link has a vector weight �uik representing the
utilization of all links when fi is forwarded by Ok . The vector
weights attaching to virtual router Ol represent the utilization
of all links when the corresponding flows are delivered along
the shortest paths. Model (10) indicates that we need to find
a subgraph that satisfies the following three constraints,

• The degree of each source node on the top is one.
• There are at most γ candidate routers on the bottom are

covered in the subgraph.
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Fig. 7. The GSI method greedily selects edges with the order shown on the
right side. The final solution is represented by the red subgraph.

• The sum vector of all the weights in the subgraph should
be minimized in the term of its infinite norm.

For an instance of SRID problem, we could transform it
into an instance of the graph model in Fig. 6.2 Thus, in the
later section, we use them interchangeably and use {G′ =
(V ′, E′, W ′), γ} to denote the graph model instance.

B. Greedy With Short-Term Impact

For the graph model, we can easily find a greedy heuristic
algorithm. Initially, we set the solution M = ∅ in the graph
model, i.e., {xik = 0|∀i, k} in the corresponding SRID
problem instance. Since our goal is to minimize the infinite
norm, we could add one edge that increases the infinite norm
most lightly. This means that we will set xik = 1 where
(i, k) = arg minpq ||

∑
i

∑
k xik�uik + �upq||∞, i.e., adding eik

to M in the graph model. Once we set xik = 1, we delete all
edges connecting to node si in G′ in order to ensure that the
degree of the node is one. We could repeat the above steps
until all nodes on top have been covered by the subgraph M .
Meanwhile, we need to ensure that the number of covered
candidate routers cannot be larger than γ. Once the number
of covered candidate routers reaches γ, all the edges attaching
uncovered candidate routers should be deleted. As we can see,
the above algorithm selects the edge which increases θ lightest
in the current step. Thus, we call the above method as Greedy
algorithm with Short-term Impacts (GSI). The details of GSI
are shown in Algorithm 1.

Fig. 7 gives a simple example to illustrate GSI. Assume
that there are three flows originating from {s1, s2, s3} and
two candidate SRv6 routers {O1, O2}. O3 represents that
the flows are routed along the shortest paths and γ = 2.
The weights of all edges are set as the right part. At first,
{�u11, �u22, �u32, �u33} have the smallest infinite norm. Without
loss of generality, we add edge e11 into M . Then, we add
edge e22 into M since �u11 + �u22 has the smallest infinite
norm. Finally, we add edge e32 into M . As we can see,
the GSI method will select the edges es1O1 , es2O2 and
es3O2 sequentially, then the maximum link utilization will be
||�u11 +�u22 +�u32||∞ = max{9, 11, 9} = 11. However, we can

2For n-segments case, we could extend this graph model to contain n layers
where every layer contains the candidate SRv6 routers list. We leave this
discussion in Sec. VII.

Algorithm 1 Greedy With Short-Term Impact (GSI)

Require: : G = (V, E, W, C), candidate router set H , flows
{f1, f2, . . . , fm}, γ.

Ensure: : xik , ωi, θ.
1: Calculate {�uik|∀i, ∀vk ∈ H} and construct the SRID graph

model instance G′

2: {xik = 0|∀i, k}, {ωk = 0|∀k}.
3: while True do
4: (i, k) = argminp,q ||(

∑
i

∑
k xik�uik + �upq)||∞

5: ωk = 1, xik = 1, delete all edges connecting to si.
6: if

∑|H|
k=1 ωk = γ then

7: for k = 1 to |H | do
8: Delete all edges connecting to Ok in G′ where ωk =

0
9: end for

10: else if
∑

i

∑
k xik = m then

11: break
12: end if
13: end while
14: θ = ||∑i

∑
k xik�uik||∞

Fig. 8. The framework of reinforcement learning and its application in SRID.

easily find that the optimal solution should cover the edges
{es1O1 , es2O1 , es3O3} with the maximum link utilization being
||�u11 + �u21 + �u33||∞ = max{9, 9, 9} = 9. Above example
indicates that GSI method sometimes may lose the opportunity
to find the global optimal solution. To solve this problem,
we redesign the Greedy algorithm with considering Long-term
Impacts (GLI).

V. SOLUTION II: GREEDY WITH LONG-TERM IMPACT

Reinforcement learning is a theory that trains agents to
find the best solution with considering long-term reward in
each decision step [27]. As shown in Fig. 8, the environment
is the surroundings of the agent with which the agent can
interact through observations, actions, and rewards on actions.
Specifically, in each step t, the agent observes state st and
chooses action at, which has the maximum long-term reward.
The long-term reward could be acquired by learning. For a
given SRID problem instance,3 we can easily transform it into
a graph optimization problem and train an agent to solve it
sequentially. The right subfigure of Fig. 8 depicts the case
when the reinforcement learning framework is applied to the
SRID problem. However, such an agent trained for one SRID
problem instance cannot be used to solve other SRID problem
instances. As a comparison, the GSI method in Section IV can
solve any SRID problem instances because GSI has no specific
relation with the problem instances.

3A given SRID problem instance means that the network G =
(V, E,W, C), the candidate router set H , the value of γ and the flows are
given.
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Algorithm 2 State Representation With Network Embedding
Based on Mean-Field Inference
Require: : G′ = (V ′, E′, W ′), hyper parameter d, the number

of iterations T , X = {xik|∀i, k}.
Ensure: : {μ̃ik|∀eik ∈ E′}
1: Initialize {μ̃ik = 0|∀eik ∈ E′}, W1 ∈ Rd, W2 ∈ Rd×d,

W3 ∈ Rd

2: for i = 1; i <= T ; i + + do
3: for ∀eik ∈ E′ do
4: μ̃ik = σ(W1xik + W2

∑
euv∈N(eik) μ̃uv +

W3||
∑

euv∈N(eik) �uuv||∞)
5: end for
6: end for
7: Return φ(S) using Equation (12)

We hope to train an agent that can be used to solve different
SRID problem instances. The agent with good generalization
ability will have many benefits since there may be different
problem instances in different ISP networks. This expectation
equals to the following problem:

Given the SRID problem P and a series of problem
instances {P1, P2, . . . , Pn}, can we learn an agent that could
solve any unseen problem instance of P ?

Fortunately, the results in literature [28] indicated that a
general agent could be trained for the minimum vertex cover
problem and the maximum cut problem. In this paper, we will
leverage the theory in [28] to propose our GLI method.
The GLI method includes state representation, action and
reward design, state-action value function approximation and
Q-learning.

A. Action and State Representation

In the greedy algorithm, we add one edge into the partial
solution M greedily based on the graph itself and the current
partial solution. Thus, we use the combination of graph and
current solution to represent the state S. The action is repre-
sented by adding one edge into the partial solution. However,
there are m×(l+1) edges in the graph model; thus, the number
of the states could reach 2m×(l+1), which is a huge state space.
Besides, the general agent requires that there is a general
state representation to cover different problem instances. The
above direct representation cannot satisfy the requirement,
and it cannot find the potential structure of the graph model.
Literature [29] proposed an embedding framework named
structure2vec. The authors extracted features by performing a
sequence of function mappings in a way similar to graphical
model inference procedures. In detail, they embedded latent
variable models into feature spaces and learned such features
spaces using discriminative information. In this paper, we will
leverage this theory and design the embedding framework for
our SRID graph model. The detailed background theories,
e.g., Hilbert space embedding of distributions and mean-field
inference, could be found in [29].

The basic idea of embedding our SRID graph model is
to add a latent variable μ̃ik ∈ Rd to each edge eik in
which d is a hyperparameter chosen using cross-validation.
Besides, some edges in the SRID graph model are neighbors,

Fig. 9. The graph embedding of the example in Fig. 7. In this figure, each
edge is built if the two end nodes represent a pair of neighbor edges in the
original SRID graph model.

which indicates that they share a common node. To model
these neighbor relations into the embedding space, we connect
the corresponding latent variables together. Fig. 9 shows the
graph embedding model of the example in Fig. 7, these
latent variables are connected if the corresponding edges are
neighbor edges in the original SRID graph model. Since our
solution is decided by which edges are selected, thus, we add
a 0-1 variable xik to denote whether the edge eik is selected.
Obviously, the value of μ̃ik is influenced by the following
three parts.

• xik, which represents whether eik is included in the
solution.

• Other latent variables of its neighbor edges N(eik), which
represent the combinatorial structure of the problem.

• ||∑euv∈N(eik) �uuv||∞, which are used to distinguish
different states further.

Similar to [29], we use a neural network to build this relation:

μ̃ik = σ(W1xik + W2

∑
euv∈N(eik)

μ̃uv

+ W3||
∑

euv∈N(eik)

�uuv||∞), (11)

where W1 ∈ Rd, W2 ∈ Rd×d, W3 ∈ Rd and σ represents
a ReLU activation function, i.e., σ(x) = max(0, x). Note
that there is a recursion in Equation (11). The more update
iterations we carry out, the farther away the node features
will propagate and get aggregated nonlinearly at distant nodes.
If we terminate after T iterations, each edge embedding vector
μ̃ik will contain information about its T−hop neighborhoods.

Finally, we will get a d-dimension embedding vector for
each edge {μ̃ik|∀eik ∈ E′} in G′. Then the state could be
denoted by

φ(S) =
∑

eik∈E′
μ̃ik + W4

∑
eik∈E′ xik

γ
, (12)

where W4 ∈ Rd. The above method could embed a SRID
graph model instance with a d-dimension vector no matter
what size of the original network is. As indicated in liter-
ature [28], this general d-dimension vector could represent
the state of G′ with the partial solution in a unified way
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for different SRID problem instances. Combining the above
network embedding and mean-field inference, we will find the
final network embedding as shown in Algorithm 2.

B. Reward

The action a that selects edge eik could be represented by
xik = 1. Given a state S and an action a, we could easily get
(φ(St), a) → φ(St+1) using Algorithm 2.

For any partial solution St, we could define a function
c(φ(St), G) to evaluate its quality. In our SRID graph model,
the goal is to minimize ||∑i

∑
vk∈H′ �uikxik||∞, it equals

to maximize −||∑i

∑
vk∈H′ �uikxik||∞. Besides, we should

avoid selecting the edges that make the solution infeasible.
Thus, we could set c(φ(St), G) as

c(φ(St), G) = −||
∑

eik∈E′:=S

�uik||∞ + h(St), (13)

where

h(St) =

{
0, if X := St not violates model (10)

−∞, Otherwise.
(14)

Then the reward could be represented by

r(φ(St), a) = c(φ(St+1), G) − c(φ(St), G). (15)

It is easily to prove that the cumulative reward equals to the
goal function value of model (10). Let us review the example
in Fig. 7 to check the reward design. In the first action,
i.e., adding e11 into ∅, the reward is r1 = −||�u11||∞ − 0 =
−||(3, 4, 2)||∞ = −4. In the second action, we add e22 into
{e11} and get a reward r2 = −||(3, 4, 2) + (2, 3, 4)||∞ −
(−||(3, 4, 2)||∞) = −3. In the third action, we add e32 into
{e11, e22, e32} and get a reward r2 = −||(3, 4, 2)+ (2, 3, 4)+
(4, 4, 3)||∞−(−||(3, 4, 2)+(2, 3, 4)||∞) = −2. Finally, we get
the cumulative reward r1 + r2 + r3 = −9, which equals
to the goal function value of the solution in the view of
maximization.

C. Q-Learning

In reinforcement learning framework, the state-action func-
tion, i.e., Q(φ(S), a) is used to evaluate the long-term reward
of the action. Every time when the agent is in φ(S), it will
take the action a∗ = maxa Q(φ(S), a). Similar to [28], we use
a neural network to approximate the Q function as follows,

Q(φ(S), axik=1) = W5σ([W6φ(S), W7ũik]). (16)

In Equation (16), [·, ·] is the concatenation operator and
W5 ∈ R2d, W6, W7 ∈ Rd×d. Since φ(S) is decided by
{Wi}3

i=1, Q(φ(S), a) will be decided by {Wi}7
i=1. In Fig. 10,

we give the framework of learning these parameters.
We use an episode to represent a complete sequence of edge

additions starting from an empty solution in SRID problem
and step to represent a single action, i.e., adding an edge,
in an episode. There are two networks in Q-learning, behavior
network and target network, which both of them represent
the approximation of Q function but with different parameter
values (W and W−, respectively). The behavior network is
responsible for helping the agent to take the next action and

Fig. 10. The framework of Q-learning.

generate the episode, while the target network is responsible
for providing the forecast value of the Q function. In fact,
the setting of these two networks is to increase the stability of
the network model [30]. These two networks are same at first,
and then the behavior network will update the parameters in
each step of the agent and send these updates to the target
network periodically.

The standard deep Q-learning algorithm updates the approx-
imation function’s parameters at each step of an episode by
performing a gradient step to minimize the squared loss

(yt − Q(φ(St), at|W ))2 (17)

where

yt =

⎧⎪⎨⎪⎩
rt+1, if St+1 is terminal state

r(φ(St), at) + γ maxa

Q(φ(St+1), a|W−), Otherwise.

(18)

As introduced in [28], the final objective value of a solution
for a combinatorial optimization problem is only revealed after
many edge additions, thus, we use n-step Q-learning [27]
to train the parameters. In detail, we compute the forecast
value of Q function for non-terminal state with the following
equation,

yt =
n−1∑
i=0

r(φ(St+i), at+i) + γ max
a

Q(φ(St+n), a). (19)

To further improve the convergence speed, one method
called fitted Q-iteration has been proposed [28], [31]. In fitted
Q-iteration, the parameters of Q-function are updated with
a batch of samples instead of sample-by-sample. The batch
of samples is randomly selected from a dataset E which is
called relay buffer in Fig. 10. In the step t + n of each
episode, the tuple (φ(St), at, Rt,t+n, φ(St+n)) is added to
E, with Rt,t+n =

∑n−1
i=0 r(St+i, at+i). With these samples

and the loss function, the stochastic gradient descent algo-
rithm updates the parameters in the behavior network. The
behavior network will synchronize itself to the target network
periodically. To describe the parameters training more clearly,
we summarize the details in Algorithm 3.

Once we get the value of {Wi}5
i=1, we could realize

the greedy algorithm with considering the long-term impact.
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Fig. 11. The overview of Greedy method on Long-term Impact (GLI).

Algorithm 3 Q-Learning for the GLI Method
Require: : A series of the SRID graph model instances P =

{P1, P2, P3, . . .}, the experience replay buffer size |E|,
the number of episodes L

Ensure: : {Wi}5
i=1

1: Initialize {Wi = 0}5
i=1 and {W−

i = 0}5
i=1

2: for i = 1; i <= L; i + + do
3: Select a problem instance Pi and initialize {xik =

0|∀i, k}
4: while Not Terminated do
5: Select an edge randomly with probability ε, otherwise

take action at = argmaxaQ(φ(St), a|W )
6: if t ≥ n then
7: Add tuple (φ(St−n), at−n, Rt−n,t, φ(St)) to E.
8: Sample random batch B from E
9: Update {Wi}5

i=1 using stochastic gradient descent
over

∑
(y − Q(φ(S), a)|W )2 for B.

10: end if
11: let W− = W periodically
12: end while
13: end for
14: Return {Wi}5

i=1.

Fig. 11 gives an example of GLI. After finishing the training,
we will get values of all parameters. Initially, we use Algo-
rithm 2 to embed the graph, then use parameters {Wi}7

i=4

to get the Q values of all available actions. Next, we select
the action with the maximum Q value and extend the corre-
sponding partial solution. In the example, es1O1 is added into
the partial solution. Repeat the above steps until the terminate
condition is triggered, and then we will get the final solution.
It is emphasized that the action space is influenced by the state.
In the second iteration of the example, the available actions
are adding es2O1 or es2O2 since there is no need to considering
edges connecting s1. The biggest difference between GLI and
GSI is that GLI greedily selects the edge based on Q value,
while GSI is based on estimating the degree of increase in the
goal function.

TABLE II

PARAMETER SETTING

VI. EVALUATION

A. Experiment Setting

1) Dataset and Parameter Setting: We use the network
topologies and flow demands provided by DEFO [22], [32].

• Training dataset: We generate SRID problem instances
from DEFO dataset. There are 7 network topologies in
DEFO, for each network topology, we randomly select
{10, 20, 30, . . . , 200} flow demands, {10, 15, 20, . . . , 40}
candidate routers and set γ from {1, 2, . . . , 10}. For
each parameter combination, we construct 2 problem
instances, thus, we have total 7×20×7×10×2 = 19600
problem instances. Like [28], we set the dimension of
latent variables d = 64, the batch size |B| = 64, the prop-
agation iterations in state representation |T | = 5 and the
delay steps in Q-learning n = 5. All the parameters in
the training phase are summarized in Table II.

• Validation dataset: We select China Education and
Research Network (CERNET), rf1221 and rf1239 as the
network topology in validation experiments. There are
37, 151 and 972 edges in CRENT, rf1221 and rf1239,
respectively. Thus, the weights in the three corresponding
graph models will be 1×37, 1×151 and 1×972 vectors,
respectively.

2) Compared Methods: Since the method in literature [12]
focuses on SR-MPLS, which has a different data plane mech-
anism from our SRID, we did not select it as our benchmark.
We use Gurobi, SP, DEG and BTW as the benchmarks. The
Gurobi method uses an academic free programming solver,
i.e., gurobi [33], to find the optimal solution of the model (10)
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Fig. 12. Convergence of GLI training process which is measured by the
ratio between the solutions of GLI and GSI.

directly. We restrict the solver time of Gurobi within one hour
to ensure that the problem is solved efficiently. The SP method
steers all flows along the shortest paths, which are the default
paths in OSPF. DEG and BEW are proposed in [13]. In DEG
(degree), the nodes are selected in the descending order of
node degree. In BTW (betweenness centrality), the nodes are
selected in the descending order of betweenness centrality,
which means the number of shortest paths passing through
the node. It is needed to emphasize that the DEG and BTW
methods are only capable of deciding which nodes could be
upgraded but not finding the routing. Thus, after DEG and
BTW deciding the upgraded nodes, we use our GSI method
to assign the routings.

3) Implementation: The GLI algorithm is implemented
using Pytorch based on the codes in graph_com_bopt [34].
And we trained GLI on Amazon EC2 p2.xlarge instance,
which is CUDA K80-enabled. Then we evaluate all the algo-
rithms on MacBook Pro with Intel Core i5.

4) Convergence of GLI: We use GSI to get the benchmark
solutions to the different SRID problem instances in the
training phase. In Fig. 12, we plot GLI’s convergence which is
measured by the ratios between the solutions of GLI and GSI.
As we can see, GLI performs better than GSI after around
12500 iterations and finally converges to approximately 0.8.

B. Visualize the Different Solutions in CERENT

We first evaluate the different methods with CERENT
topology since we can visualize the different solutions in
this small-scale case easily. We generate a traffic matrix
with 400 flows, set the candidate router set with |H | = 15
and γ = 5. It is noted that we set the above parameters
without special requirements. In fact, we can set other values
for these parameters without influencing the conclusions.
As shown in Fig. 13, the compared four methods have dif-
ferent deployment solutions. The DEG method deploys the
SRv6 routers in the nodes which have the highest degrees,
and the BEW method deploys them in the nodes that have the
highest between centrality values. However, we can see that
the solution of GLI method presents different characteristics
that both node 10 and node 19 do not have high degrees
or high between centrality values. Instead, the GLI method
deploys the SRv6 routers more evenly. We think that this
balanced deployment can avoid the bottleneck links around the
nodes with high between centrality values. In this experiment,
we find that the solution of the GLI method is the same as
the optimal solution resulted from Gurobi. The maximal link

Fig. 13. The different SRv6 deployment solutions in CERENT with the
setting that |H| = 15, γ = 5.

utilizations of GSI, DEG and BEW are higher than the optimal
value by 47.2%, 65.4% and 65.6%, respectively.

C. Experiment Results in Small-Scale Case

As shown in model (10), its complexity is decided by the
number of flows, the number of candidate routers and the num-
ber of network edges. To evaluate the impacts of the above
parameters with the optimal solution, we restrict the values
of the above variables. In this experiment group, we select
rf1221 as our network topology. To better display the experi-
ment results, we scale the capacities of the network so that the
maximum link utilization in the most congested case is nearly
100%.

1) The Impacts of the Number of Flows: In this experiment,
we set γ = 5 and select |H | = 20 candidate routers randomly.
Fig. 14(a) indicates that the value of the maximum link
utilization grows up as the number of flows increases. This
phenomenon is easy to understand since more flows will
consume more bandwidth. The optimal solution can reduce the
maximum link utilization by 21.93% on averagely comparing
to default shortest paths. The average result of GLI method is
only 2.83% higher than the optimal solution, while the average
result of GSI method is 14.27% higher than the optimal
solution. The above results indicate that GLI method certainly
outperforms GSI method. Besides, we can see that the curves
of DEG and BEW are almost the same. This phenomenon
may be caused by two factors. The first factor is that the
nodes with higher degrees usually have high betweenness
centrality values. The example in Fig. 13 shows that the
DEG method and the BEW method select as high as 80%
of common nodes. The second factor is that the number of
flows in this experiment is low such that the selected nodes
may not need to handle the flows. Fig. 14(b) shows that SP
method can produce the lightest value in terms of the top
20% highest congested links. The reason behind this tendency
is that the SRv6 strategy will steer more flows to traverse the
links connecting to SRv6 routers. This result indicates that we
should also enlarge the link bandwidth near the SRv6 routers.

2) The Impacts of the Candidate Routers: In this experi-
ment, the number of flows is 60 and γ = 5. Since the SP
method will neglect all candidate routers, its curve should be
flat. However, as shown in Fig. 15(a), the curve representing
SP method has a variation. We think that this variation is
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Fig. 14. Small-scale: The impacts of the number of flows on two metrics.

Fig. 15. Small-scale: The impacts of the number of candidate routers on
two metrics.

Fig. 16. Small-scale: The impacts of γ on two metrics.

produced by selecting flow demands randomly. The other
curves show a similar variation, which indicates that the
number of candidate routers has no impact on reducing the
maximum link utilization as long as it is larger than the value
of γ. In Fig. 15(b), the variations of the methods could reach
5.74% at most, which proves the above conclusion further.
One strange point of Fig. 15(a) is that the curve of the BEW
method lies above the curve of SP. The reason behind this
phenomenon is that the BEW method only selects the nodes
with the highest betweenness centrality values while the detail
routings are greedily found by GSI.

3) The Impacts of γ: In this experiment, the number of
flows is 60 and the number of candidate routers is 10.
As shown in Fig. 16(a), the curve representing SP method
is nearly flat, while the other five curves decline as the
number of candidate routers increases. This is because that
SP method neglects the candidate routers while the other five
methods will adjust their routing solutions with different γ.
Particularly, the DEG method and the BEW method can relieve
the congestion of SP as γ increases. However, DEG and
BEW still perform worse than GSI due to the inflexibility

Fig. 17. Large-scale: The impacts of the number of flows on three metrics.

in selecting the SRv6 routers. Compared to SP, the maximum
link utilizations of GUROBI, GLI and GSI could be reduced
by 24.84%, 21.2% and 11.26%, respectively. Fig. 16(b) shows
the same tendency, i.e., the average top 20% link utilization of
GUROBI and GLI decreases as γ increases. Besides, the bars
of GSI method do not decline as the γ increases. This may be
because that GSI overvalues short-term impact and is trapped
in the local optimal solution zone.

D. Experiment Results in Large-Scale Case

In this group of experiments, we use rf1239 as our network
topology and evaluate the impacts of the number of flows
and γ since the results in small-scale showed that the num-
ber of candidate routers almost have no impacts. Instead of
presenting the average value of the top 20% link utilizations
in the small-scale experiments, we present the cumulative
distribution function of the top 20% link utilizations. Besides,
we compare the number of flows that have to change their
routings with two different greedy methods. Like the experi-
ments in Sec. VI-C. We also scale the capacities of the network
to make the maximum link utilization in the most congested
case be nearly 100%.

1) The Impacts of the Number of Flows: In this experiment,
we set the number of candidate routers as 25 and γ = 5.
Like Fig. 14(a), Fig.17(a) also shows that the maximum link
utilization grows up as the number of flows increases. The GLI
method can reduce the maximum link utilization by 48.3% and
20.8% averagely against SP and GSI, respectively. Fig. 17(b)
shows that the number of flows that have to change their
default routing increases as the number of flows grows up.
Considering the results in Fig. 14(a) and Fig.17(a) together,
we can see that GLI method changes 55.1% fewer routings
averagely than GSI method but can reduce the maximum
link utilization by 20.8% on average. This result indicates
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Fig. 18. Large-scale: The impacts of the γ on three metrics.

that the greedy strategy which considers long-term impact can
reduce the maximum link utilization with less overhead. As a
comparison, DEG and BEW change fewer routing paths and
produce higher congestion. Fig. 17(c) presents the cumulative
distribution function of the top 20% link utilizations. To make
the figure readable, we only show the case with 500 flows and
2500 flows. It is easy to find that the curves with 2500 flows lie
on the right of curves with 500 flows. Meanwhile, the curves
of GLI-500 and GLI-500 lie on the left of GSI-500’s and
GSI-500’s, respectively. This phenomenon indicates that GLI
method could reduce both the average link utilization and the
maximum link utilization.

2) The Impacts of γ: In this experiment, we set the number
of candidate routers as 25 and the number of flows as 2500.
Fig. 18(a) shows that GLI method can reduce the maximum
link utilization by 59.1% and 23.7% at most against SP
and GSI, respectively. Also, we can see that the maximum
link utilization of the two greedy methods reduces as the γ
increases, which results from that larger γ gives much more
space to change the default routing paths. This assumption
can be proved by Fig. 18(b) where the number of flows that
change default routings increases as γ grows up. Similar to
Fig. 17(b), GLI method is more efficient than GSI method
since the number of changed routings of GLI is average 49.2%
and is less than that of GSI method. In Fig. 18(c), we plot
the cumulative distribution function curves of the top 20%
link utilizations. To make it clear, we only present the curves
with γ = 1 and γ = 5. Under the same method, the curve
with larger γ lies on the right of the curve with lower γ(e.g.,
see the curves of GLI-1 and GLI-5). The reason behind this
phenomenon is that larger γ will change more flow routings
(as shown in Fig 18(b)) and lead to the utilizations of the
links near to the SRv6 routers increase. Under the same γ,
the curve of GLI method lies on the left of the curve of GSI
method (e.g., see the curves of GLI-5 and GSI-5). This further
indicates that GLI method outperforms the GSI method since

Fig. 19. The multi-level multigraph model for SRID problem.

it could minimize both the maximum link utilization and the
average link utilization.

VII. DISCUSSION

A. Model Generality

In the previous section, we have pointed out that our method
could be extended to the general case where n-segments
routing is permitted. In 2-segments case, there are m× |E| ×
(l + 1) different cases for constraint (2) where m represents
the number of flows, |E| represents the number of edges in
G and l represents the number of candidate routers. While in
n-segments case, there will be m × |E| × ∑n

k=0 Ak
l different

cases since any permutation of the candidate routers from H
could be chained together. Fortunately, the graph model of
SRID problem could convey these massive constraints in a
simple way. For n-segments routing case, we could construct a
multi-level multigraph for the SRID problem as Fig. 19 shown.
The 0th level represents the source nodes of m flows. There
are l + 1 nodes in the following each level where the left l
nodes represent the candidate routers in H (|H | = l) and the
rightest node represents the virtual router. From the 1st level,
each arrow towards the next level contains m parallel edges.
Each arrow has a composite weight which is composed of m
vectors. For the example in the bottom of Fig. 19, we can find
�u1

1,l−1 = (�u1f1
1,l−1, �u

1f2
1,l−1, . . . , �u

1fm

1,l−1) and �u1f1
1,l−1 represents the

link utilization of all edges in the original graph G when f1

traverses the shortest path between O1 and Ol−1 in G. It is
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noted that for the arrows connecting nodes in the last row
and the last column, the vectors are calculated differently. For
example, in the last row, �un−2

j,k (j < l, k < l), �un−2fi

j,k represents
the link utilization of all edges when fi is routed along the
shortest path between Oj and Ok and then the shortest path
between Ok and the flow destination di. In the last column,
�uh

j,l(h ≤ n − 2, j < l), �uhfi

j,l (h ≤ n − 2, j < l) represents
the link utilization of all edges when fi is routed along the
shortest path between Oj and the flow destination di since Ol

represents the virtual router.
To find the routing for a flow fi, we need to find a

path in this multi-level multigraph that satisfies the following
conditions:

• Condition 1: The path starts from si and ends in any node
of the last level or the rightest column, i.e., {On−1

j |j =
0, 1, 2, . . . , l} ∪ {Oj

l |j = 1, 2, . . . , n − 1}.
• Condition 2: All the edges apart from the first one must

have the weights about fi, i.e., annotated by �uhfi

j,k .
With this multi-level multigraph model, we could solve the

SRID problem by finding a subgraph satisfying the following
constraints:

• The degree of each source node on top is one.
• There exists a path from the source to the node in the

last level or the node in the rightest column.
• Without considering the source nodes, there are at most

γ columns are covered in the subgraph.
• For each source node, there exists a path satisfying

condition 1 and condition 2.
• The sum vector of all the weights in the subgraph should

be minimized in the term of its infinite norm.
With this multi-level multigraph model, we could extend the

GSI method and the GLI method to solve the SRID problem.
In the GSI method, we could first select the edge between the
0th level and 1st level greedily to ensure which flows should
be first routed. Then we extend the path for the selected flows
with the same greedy rule, i.e., increase the objection value
lightest. In the GLI method, we need an agent to evaluate
the long-term impact of adding one edge into the subgraph.
In the extension procedures of GSI and GLI, we just compare
the edges related to the current flow in each level. Such a
design could ensure that the produced result is a feasible
solution to the SRID problem. To reduce the impact of the
maximal number of available segments, we should train an
agent for each possible value of n. In this way, we could
promise that each agent is trained without embedding the
parameter of n.

B. Multi-Stage Deployment

One important assumption of the SRID problem is that the
network infrastructure cannot be fully upgraded at once and
usually are upgraded with several stages. Our SRID model
can be used to solve the incremental deployment problem even
though it includes several stages. In fact, we have modeled this
multi-stage problem into the SRID model with Equation (6).
In this equation, we assign a binary variable hk to denote
whether node vk has already been upgraded in previous stages.
Then we could treat a multi-stage deployment problem as mul-
tiple independent single-stage deployment problems, which

can be solved by the GSI method and GLI method. The only
cost of this transformation is that we need to recalculate the
weights of edges that are related to the upgraded SRv6 nodes.

VIII. CONCLUSION

The network infrastructure should be upgraded incremen-
tally; thus, we studied the problem of SRv6 incremental
deployment (SRID) for ISPs in this paper. Firstly, we for-
mally defined and formulated the SRID problem with integer
programming. Then we transform this problem into a graph
model. To solve the problem efficiently, we designed two
methods, i.e., GSI and GLI, by greedily extending the partial
solution. In detail, GSI focused on enabling those SRv6 routers
that increase the goal function lightest in the current step.
In comparison, GLI devoted to enabling SRv6 routers with
considering the long-term reward. To realize GLI, we designed
an end-to-end reinforcement learning framework including
network embedding, reward design and Q-learning. The exper-
imental results over a public dataset showed that both GSI and
GLI could significantly reduce the maximum link utilization,
with GLI cutting down the maximum link utilization by 59.1%
at most against the default shortest path routing method.
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