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A B S T R A C T

Predicting where people will consume in the future is of great significance for promoting local
business. Although the prevalence of Geo-Social Networks (GSNs) has provided sufficient and
desirable geo-tagged data for user mobility modeling, most studies attempt to directly fit user’s
preference toward locations through exploring the complex interaction between ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩
pairs, which is usually hard to incorporate temporal–spatial context and side information.
Moreover, the availability of multi-modal data associated with both user and location in GSNs
has not yet been comprehensively leveraged. In view of the above-mentioned situations, in
this article, we propose a two-stage framework composed of a Temporal Base Model (TBM)
and a Location Prediction Model (LPM) to accomplish the task of user consumption location
prediction at a given time in the future. In the first stage, based on user sentimental textual
reviews, we leverage the hierarchical attention mechanism to capture time-sensitive user
latent preference. In the second stage, we fuse the multifaceted context to derive the user’s
consumption probability toward different locations at the given time. We conduct extensive
experiments over three real-world GSN datasets to verify the performance of the proposed
approach. The experimental results encouragingly demonstrate the effectiveness of the two-stage
framework, which outperforms multiple baselines in terms of different evaluation metrics such
as accuracy, average percentile rank (APR) and coverage ratio.

. Introduction

Geo-Social Networks (GSNs) have become an indispensable part of people’s daily life by providing location-based service and
nline social networking service simultaneously. At present, representative GSNs such as Foursquare1 and Yelp2 are attracting
housands of new users every day. According to Statista,3 the number of unique mobile visitors to Yelp has reached 30 million
t the 4th quarter of 2020, which enables Yelp to be one of the most popular geo-social networking service providers. A huge
mount of user footprints such as check-ins and reviews have been produced in GSNs, offering fine data support for researchers to
nderstand and model users’ mobility, which ultimately serves user future consumption location prediction. To help illustrate the
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Fig. 1. Overview of an example concerning a restaurant and its visitors on Yelp. The left part illustrates the available attributes associated with this venue,
while the right part shows the visitors’ attributes and their reviews on this venue.

Fig. 2. Two types of user location prediction problems, where ① represents successive user location prediction and ② represents given-time user location prediction.

characteristics of geo-social networking data, we present a practical example concerning a location4 and its visitors on Yelp (Fig. 1).
For the sake of preserving user privacy, we blur the user profile photos and nicknames.

The problem of user location prediction has long been a hot issue in both academia and industry, as it is able to bring huge
value to practical scenarios such as personalized point-of-interest recommendation (Cai, Wen, Wu, & Yang, 2021) and intelligent
traffic scheduling (Yang et al., 2020). The essence of user consumption location prediction based on geo-social networking data is to
thoroughly mine the temporal–spatial characteristics, sequential relations, as well as user personal preferences hidden in the data,
after which machine learning based techniques can be employed to integrate the multi-dimensional information so as to infer where
the user will go in the future (Qian, Lu, Han, Du, & Li, 2017; Xu, Fu, Cao, Liu & Wang, 2020). From the perspective of prediction
timeliness, current studies concerning user consumption location prediction are basically classified into two types: (1) successive user
location prediction, which aims to predict a user’s next visit location given his/her historical footprints; and (2) given-time user location
prediction, which aims to predict where a user will be at a given time in the future. For clarity, we display the comparison between
two types of location prediction problems in Fig. 2. Suppose we collect the historical consumption sequence of user 𝑢 and its length
is 𝑙𝑢, as each of user 𝑢’s consumption behavior until 𝑡𝑢𝑙𝑢 is known, whereas his/her consumption behaviors are not available during
the period from 𝑡𝑢𝑙𝑢 to 𝑡𝑢𝑔𝑖𝑣𝑒𝑛, predicting where user 𝑢 will consume at time 𝑡𝑢𝑔𝑖𝑣𝑒𝑛 shall be more challenging than at time 𝑡𝑢𝑙𝑢+1 because
there is less information provided. In this article, we aim to solve the given-time user consumption location prediction based on
geo-social networking data (enclosed by the gray dashed box shown in Fig. 2). Consider the following scenario: if we can predict
where someone will go at a designated time in the future, it not only facilitates neighboring businesses to formulate personalized
and timely marketing strategy so as to increase revenue (Gao et al., 2018; Zhang et al., 2021), but also helps provide effective means
for authorities to monitor the user of interest (Xu, Cao, Legg, Liu & Li, 2020).

Most of the existing literatures such as Feng et al. (2020), Gao et al. (2019) and Yang, Fankhauser, Rosso, and Cudre-Mauroux
(2020) focus on predicting the user’s successive consumption location, which basically explore the short-term sequential mobility
pattern in user most recent trajectories. For these studies, the common approach is to depict the complex ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ interaction,
so that the user’s visit probability toward a specific location can be fitted. Note that in the whole process of ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ interaction
modeling, the user’s exact visit time at this location is generally ignored. As a comparison, literature concerning given-time user
location prediction is rare. The common approach for such research is to embed heterogeneous vertices (including but not limited to
user, location and time) into low-dimensional vector space, based on which the cosine similarity or inner-product between vertices is
applied to find the most possible location where a user would go at a given time (Yang, Qu, Yang, & Cudre-Mauroux, 2019b; Zhao,
Zhao, Yang, Lyu, & King, 2016). It is well acknowledged that user latent preference modeling is fundamental to user mobility
prediction (Zhao, Lou, Qian, & Hou, 2020). However, most of the existing studies tend to characterize user latent preference

4 In this article, the three terms ‘‘location’’, ‘‘point-of-interest (POI)’’ and ‘‘venue’’ can be used interchangeably unless otherwise stated.
2
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Fig. 3. Overview of the proposed two-stage framework.

solely based on location embedding, which is indirect and insufficient. Few studies attempt to model user intrinsic preference,
especially the dynamic periodic preference along with time. For example, in Feng et al. (2018) and Gao et al. (2019), location
embeddings are sequentially fed into the Recurrent Neural Network (RNN), where the hidden state in the last step is taken as
the user latent preference, which can only reflect the short-term user preference toward locations as only sequential features are
exploited. Moreover, although user mobility features like temporal cyclic effect, geographical influence, sequential relation, as well
as social ties are widely exploited in previous studies, we argue that the multi-modal geo-social networking data, especially the user
posted textual reviews, has not been fully utilized. How to incorporate sentimental textual contents and further fuse the multifaceted
context are still intractable.

In view of the above-mentioned shortcomings in existing research, in this article, we propose a two-stage framework (see Fig. 3)
for user consumption location prediction at a given time in the future. As can be seen from Fig. 3:

− In the first stage, a Temporal Base Model (TBM) is conceived to model user intrinsic consumption preference within different
time windows (see Section 4.1). At this stage, user textual reviews are leveraged to train time-sensitive user latent preference
by hierarchical attention mechanism. In order to characterize user intrinsic preference, we propose to connect sentimental
review representation (Wu, Dai, Yin, Huang, & Chen, 2018) and topic modeling (Zhou, Noulas, Mascolo, & Zhao, 2018)
through multi-layer neural network architecture, which in turn promotes learning dynamic user preference within different
time windows.

− In the second stage, a Location Prediction Model (LPM) is conceived to portray the time-sensitive ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ interaction (see
Section 4.2), so that the user’s consumption probability toward the location at a given time can be well fitted. At this stage,
we incorporate categorical information of locations as well as geographical and social influence into LPM through non-linear
feature fusion. A scoring function is ultimately derived to calculate the overall consumption probability.

We verify the effectiveness of the proposed two-stage framework using three Yelp datasets, which are generated from three
representative metropolises in North America. Extensive experiments from different aspects have been conducted to evaluate the
performance of the proposed approach. The empirical results encouragingly demonstrate the superior prediction accuracy and
ranking capacity of our approach, as it is not only at least 19.4%, 11.7% and 16.1% better than the state-of-the-art approach on
𝐴𝑐𝑐@5 metric using different datasets respectively, but also delivering higher 𝐴𝑃𝑅 metric values than the comparisons. Last but
not least, as it generally has the best performance in terms of coverage ratio metric, the approach also shows fine usability for user
consumption location prediction in real-world scenarios.

To sum up, the core contributions of this work are three-fold:

• First, based on user sentimental textual reviews, we propose to portray user intrinsic periodic preference by the hierarchical
Temporal Base Model, to our knowledge, this is the first attempt to directly learn time-sensitive user latent preference by
3

bridging the gap between topic modeling and sentimental review representation using deep neural networks.
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• Second, the multi-modal geo-social networking data is leveraged. We incorporate textual content, categorical information,
geographical influence, as well as social relation into the Location Prediction Model, so as to predict the user’s consumption
location at a given time in the future.

• Third, a comprehensive evaluation based on three real-world GSN datasets is conducted. Quantitative comparisons on multiple
metrics show that our approach outperforms several state-of-the-art methods in terms of user consumption location prediction
performance.

The rest of the manuscript is organized as follows. Section 2 reviews the related works. Section 3 introduces the datasets and
ives the formal definition of the problem. Section 4 explains the Temporal Base Model and the Location Prediction Model, respectively.
ection 5 elaborates the experiments. Finally, Section 6 concludes the article and introduces the direction of future work.

. Related works

.1. Indicative features for user mobility modeling

Temporal Cyclic Effect: Gao, Tang, Hu, and Liu (2013) introduce the concept of time window to simulate the temporal
eriodicity of user mobility for the first time. They propose a temporal-context based framework to explore the impact of periodicity
n the predictive performance for user future visits. In recent years, temporal cyclic effect hidden in user trajectories has been further
xplored. Hao, Cheang, and Chiang (2019) and Yu et al. (2020) analyze user check-in pattern during weekdays and weekends,
espectively, and design time-aware embedding models to depict user preference under two temporal contexts. Specifically, Yu
t al. (2020) apply a density-sensitive method to partition user check-in records, so that the division could be finer-grained in the
eak period of user visits, while it could be relatively coarse-grained in slack visit period. Cao, Xu, Zhu, Lv, and Liu (2018) quantify
he predictive accuracy of various models under different temporal contexts. The key findings can be summarized as follows, for
he time periods when people tend to have regular activities like going to office and taking public transportation, the predictive
erformance can be the best, while for people’s leisure time, the predictive performance will decrease. Zhou, Mascolo, and Zhao
2019) extend the traditional LDA model with temporal factor. They propose to infer user topic distribution under a given time
indow, which can be regarded as the temporal-specific representation of the user. However, in Zhou et al. (2019), only 37 phrases

tanding for location categories are used, which cannot reflect users’ sentiment and opinion toward locations.
Another strategy to incorporate temporal factor is to model the impact of time interval on users’ future mobility. Intuitively,

uman beings tend to keep steady visit preference within a short time period, while a large time gap may change their visit
reference. Based on this assumption, literatures Yang et al. (2020) and Xu et al. (2021) redesign the architecture of RNNs by
ntroducing a time gate to update users’ visit preference after a certain time interval. Xu, Cao et al. (2020) adopt a time-decay
anner to compute a user’s preference after a given time interval, by this way, locations that are visited by the user more recently
ill be assigned higher weights.

Geographical Influence: It is well recognized that every user in GSNs has his/her own mobility center, and the closer a venue
s to that center, the higher probability he/she will visit there (Gonzalez, Hidalgo, & Barabasi, 2008; Lian et al., 2018). Ma,
hang, Wang, and Liu (2018) adopt the Gaussian radial basis function to incorporate geographical influence into auto-encoders,
hrough which users’ historical visits would exert more influence on nearby unseen locations. Similarly, Zhou et al. (2019) derive a
eographical score between ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ pair, so that a nearby location to the user’s check-in center would have higher probability
o be visited. Yu et al. (2020) propose to filter locations using geographical coordinates, which helps to reduce the size of candidate
ocation set. There are also studies fusing geographical influence into RNN architecture, for example, in Kong and Wu (2018) and
hao et al. (2019), the ‘‘spatial gates’’ are added to LSTM in order to control the influence of previously visited locations.

Semantic Information: Semantic information in GSNs includes the user’s published textual contents, the venue’s categorical
escription, as well as the numerical ratings that can reflect the user’s sentiment toward venues (Zhu, Shen, Jin, Xie, & Zheng, 2015).
1) Textual contents. Many studies show that textual information can offer complementary knowledge to profile users and venues
espectively, and it is helpful to incorporate textual contents to enhance user preference modeling. Chen, Zhang, and Qin (2019)
ropose to profile user properties using textual reviews by merging sentence embeddings. In Tal and Liu (2019), textual contents of
user and a location are embedded into vectors, then they are fed into convolution layers to capture informative phrases that best

epresent the user and the location, respectively. Inspired by Word2Vec model (Mikolov, Chen, Corrado, & Dean, 2013), Chang,
ark, Park, Kim, and Kang (2018) design a hierarchical embedding model that captures the characteristics of a location from text
ontents associated with POIs. Based on the learned location embeddings, they obtain user preference using traditional models like
STM for user mobility prediction. (2) Categorical description. The categories of locations implicitly reflect users’ activities when they
isit these places. Recent literatures such as Wu, Li, Zhao, and Qian (2019a) and Yu et al. (2020) feed the category sequences of user
rajectories into RNNs to learn category-level user preference, which is then combined with POI-level user preference for user next
isit location prediction. (3) Sentimental polarity. Users’ sentiment is often embedded in their reviews, and the sentimental reviews
an reflect a user’s opinion toward a venue. By taking the numerical rating of each review as the ground-truth, Wu et al. (2018)
esign a sentiment classification model specifically for reviews on Yelp. The learned review representation not only contains user
nd location properties, but also includes sentimental attribute, which is suitable for user preference modeling.

Social Relation: Social ties are inherent attributes in GSNs, which have been widely adopted in recommender systems.
onsidering that social friends are more likely to share common interests than strangers with regard to POIs, Cai et al. (2021)
uantify the impact of social features on the predictability of a user’s future visits. Enlightened by the recent advantage of Graph
onvolutional Network (GCN), Wu et al. (2019) propose a social influence diffusion model to capture the recursive dynamic

nteractions between users. In Fan et al. (2019), GCN also proves to be effective to obtain user latent representation by integrating
4

ocial friends’ embeddings.
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2.2. Neural models for user location prediction

In recent years, neural models have been the mainstream strategy for user mobility modeling and prediction. Existing neural
odels can be grouped into three categories: (1) RNN-based models, (2) Graph embedding based models, and (3) Encoder–decoder

ased models.
RNN-based models: A lot of works have been done on the variants of RNNs, which model sequential influence and temporal

dynamics in user trajectories. Liu, Wu, Wang, and Tan (2016) extend the architecture of conventional RNN cell by incorporating
temporal and spatial factors (ST-RNN) for the first time. Following ST-RNN, more variants such as DeepMove (Feng et al., 2018),
STGN (Zhao et al., 2019), Flashback (Yang et al., 2020), LATL (Xu et al., 2021) are further proposed by introducing temporal–spatial
gate to update users’ next visit preference. However, as we note in Section 1, these works only focus on the sequential correlation
for user next location prediction, ignoring the exact visit time of ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ interaction, thus are not able to predict a user’s
onsumption location at a given time in the future.

Graph embedding based models: Graph embedding aims to project heterogeneous vertices (like user, location and time) into
ense continuous space, so that the time-specific similarity between user and location can be calculated. Xie et al. (2016) propose
graph-based embedding framework that incorporates the joint effect of temporal cyclic effect, sequential relation as well as

eographical influence to learn vector representations of venues, time slots and textual words. Yang et al. (2019b) and Zhao et al.
2016) use both social network and user check-in data to learn user embedding and location embedding, respectively. In Yang,
iu, Sun, and Bertino (2019a), in addition to the entity vertices, a transition vector is learned to bridge the gap between user and
ocation, which plays the translation role to connect user and location.

Encoder–decoder based models: Auto-encoders can effectively capture the non-linear and non-trivial relationships between
sers and locations, and enable more complex data representation in the latent space. Ma et al. (2018) conceive a self-attentive
ncoder and a neighbor-aware decoder to adaptively select indicative locations that can reflect the user’s preference. When the
hole model is trained, the bottle-neck layer of the stacked encoders can be used as the user’s latent representation. In Li, Shen, and
hu (2018), a LSTM-based encoder–decoder framework is proposed to learn the spatial–temporal representation of user check-ins,
hich integrates multiple contextual factors in a unified manner.

In conjunction with neural models, attention mechanism also plays a key role when modeling user preference. Attention
echanism not only strengthens the ability of neural networks in capturing the long-range dependencies, but also improves the

nterpretability for prediction results. For example, Chen et al. (2019) propose to learn sentence-level user embedding by assigning
eights to different textual reviews of a location. Similarly, Ma, Kang, Wu, Wang, and Liu (2019) aggregate word embeddings to

haracterize a location using a vanilla attention mechanism (self-attention), which assigns weights for different words. Guan et al.
2019) apply the aspect-level attention module and the user-level attention module to select salient features in order to find out
sers’ most concerned items, respectively.

Discussion. As far as we know, there is no study concerning user consumption location prediction at a given time based on
ulti-modal geo-social networking data. In this article, we propose a two-stage approach comprising of a Temporal Base Model

and a Location Prediction Model, where the former captures user preference in different time windows, and the latter fuses the
temporal–spatial context as well as the side information to characterize a user’s consumption probability toward a location at a
given time.

3. Preliminaries

3.1. Problem definition

In this article, following common symbolic notation, calligraphic letters denote sets, upper case bold letters denote matrices,
lower case bold letters represent column vectors, and non-bold letters represent scalars. Table 1 presents the notations used in this
article.

Without loss of generality, we formally define the user consumption location prediction problem as follows. Suppose we have
a user set  = {𝑢1, 𝑢2,… , 𝑢𝑀} and a location set  = {𝑣1, 𝑣2,… , 𝑣𝑁}, where 𝑀 and 𝑁 are the number of users and locations,
respectively. For each user 𝑢, we chronologically organize his/her historical consumption behaviors as a sequence of quadruples
𝑢 = {(𝑡𝑖𝑢, 𝑣𝑖𝑢, 𝑟𝑖𝑢, 𝑤𝑖

𝑢)}𝑙𝑢𝑖=1, where 𝑡1𝑢 ≤ 𝑡2𝑢 ≤ ... ≤ 𝑡𝑙𝑢
𝑢, 𝑙𝑢 is the number of 𝑢’s consumption records, and each element (𝑡𝑖𝑢, 𝑣𝑖𝑢, 𝑟𝑖𝑢, 𝑤𝑖

𝑢)
eans that user 𝑢 visited POI 𝑣𝑖𝑢 at time 𝑡𝑖𝑢 with numerical rating 𝑟𝑖𝑢 and textual review 𝑤𝑖

𝑢. Given the historical trajectory and the
ocial link information of user 𝑢, as well as a future time 𝑡 accurate to hour-level, we aim to predict a top-𝐾 location list for user 𝑢,

so that the correct location he/she will visit at time 𝑡 can be ranked as high as possible.

3.2. Dataset

Our study in this article is conducted using real-world Yelp data, as it provides sufficient time-sensitive ⟨𝑢𝑠𝑒𝑟, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ interactions
as well as semantic information (see Fig. 1). To be specific, three datasets generated in three representative metropolises, i.e., Toronto,
Phoenix and Las Vegas in North America, are built based on the original raw data published by Yelp.5 Following the general

5 https://www.yelp.com/dataset/challenge, access date: December 2019. The scale of original data is very large, which involves many cities in North America.
5

e extract the above-mentioned three cities to verify this work since they are typical in geography and culture.

https://www.yelp.com/dataset/challenge
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Table 1
Notations used in this article.

Symbol Description

𝑢,  A user and the set of users
𝑣,  A location and the set of locations
𝑀 , 𝑁 The number of users and the number of locations
𝑢, 𝑙𝑢 User 𝑢’s historical consumption sequence and its length
𝑢 User 𝑢’s consumption location set
(𝑡𝑖𝑢 , 𝑣𝑖𝑢 , 𝑟𝑖𝑢 , 𝑤𝑖

𝑢) User 𝑢 visited POI 𝑣𝑖𝑢 at time 𝑡𝑖𝑢 with numerical rating 𝑟𝑖𝑢 and textual review 𝑤𝑖
𝑢

𝐖𝑢, 𝐰𝑢
𝑖 The review embedding matrix and the embedding for a certain review of user 𝑢

𝐖𝑡𝑟𝑎𝑛𝑠 A trainable matrix for review embedding normalization
𝐞𝑖 The normalized embedding for a certain review
𝐡𝑢𝑡 User 𝑢’s preference embedding within a specific time slot 𝑡
𝐡𝑤𝑒𝑒𝑘
𝑢 , 𝐡𝑑𝑎𝑦𝑢 User 𝑢’s time-sensitive preference embedding under week-mode and day-mode

𝐩𝑢, �̂�𝑢 User 𝑢’s intrinsic latent representation and the output of TBM
{𝐰}, {𝐛} The set of weight vectors and biases in the attention layer of TBM
{𝐖} The set of transformation matrices in LPM
𝐮𝐶𝑎𝑡_𝑡𝑑 , 𝐮𝐶𝑎𝑡_𝑡𝑠 User 𝑢’s consumption preference embedding toward location categories for week-mode and day-mode
𝐡𝑣, 𝐯𝐶𝑎𝑡 Location 𝑣’s averaged review embedding and category embedding
𝜑(𝑢, 𝑣, 𝑡) A real value indicating user 𝑢’s normalized temporal visit probability toward location 𝑣 at time slot 𝑡
𝑔(𝑢, 𝑣) A real value indicating user 𝑢’s normalized spatial preference toward location 𝑣
𝜉(𝑢, 𝑣) A real value indicating the impact of user 𝑢’s social friends on visiting location 𝑣
�̂�(𝑢, 𝑣, 𝑡) A real value indicating the final probability that user 𝑢 visits location 𝑣 at time slot 𝑡

Table 2
Statistics of the selected datasets.

Dataset # Users # Locations # Reviews Density # Social links

Toronto 4,625 4,847 265,153 1.13% 47,392
Phoenix 11,225 7,879 546,344 0.58% 100,442
Las Vegas 13,542 7,392 641,652 0.60% 191,864

preprocessing way (Ma et al., 2018), for each dataset, we recursively remove inactive users and non-popular locations, so that
each user has at least 20 consumption records and each location has been visited at least 20 times. After preprocessing, we show
the statistics of the selected datasets in Table 2.

We plot the tag clouds of location categories over three datasets in Fig. 4. Note that as the vast majority of locations share
ommon tag words like ‘‘Restaurants’’, ‘‘Food’’, ‘‘Nightlife’’ and ‘‘Bar’’, we just remove these words in the tag clouds to strengthen
he representativeness of locations. For example, with regard to this category ‘‘Restaurants, Food, Asian Fusion, Chinese, Hotpot’’,
e keep it as ‘‘Asian Fusion, Chinese, Hotpot’’ when visualizing the tag clouds. As can be seen, locations in Toronto are highly related

to Asian elements since there are lots of Asian residents in this city; locations in Las Vegas are clearly associated with recreational
attributes, which is inseparable from the urban function; by contrast, locations in Phoenix have a strong flavor of American lifestyles.

onsidering the scale and diversity of geo-tagged data over the three datasets, we believe they are qualified to validate our approach.

. The methodologies

.1. Temporal base model

.1.1. Motivation
Different from existing studies, we propose to model user intrinsic time-sensitive consumption preference toward locations based

n sentimental textual reviews (user textual reviews with numerical ratings). The motivation can be explained from two aspects.
irst, we hold that the functionality of a location is the critical factor that drives a user’s consumption behavior, as it reveals his/her
nner requirement or the intended purpose under specific temporal context (Li, Larson, & Hanjalic, 2017). Second, each user has
nique consumption preference toward different types of locations. User preference can be learned from places where he/she leaves
igital footprints, in this situation, user posted sentimental textual reviews are the natural medium to connect WHO (user), WHEN
time), WHERE (location) and WHAT (consumption topic).

Before introducing the Temporal Base Model, it is necessary to divide continuous time stamps into discrete time windows. Inspired
y Gao et al. (2013) which shows that user mobility pattern may be cycled around one day and one week, we combine the 7-day
eek-mode and 24-hour day-mode to form a fixed number of time windows. Specifically, to alleviate data sparsity and express the
ser periodical mobility pattern more clearly, we group the 24-hour day-mode into five time slots, i.e., night (0–6 am), morning
6–11 am), noon (11 am–14 pm), afternoon (14–19 pm) and evening (19–24 pm). In this way, we divide one day into 5 slots and
ne week into 7 days, so that we have totally 35 (5 × 7) time windows to represent the temporal context.
6
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Fig. 4. Tag clouds of location categories over three datasets, where larger font indicates higher tag frequency and vice versa. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

4.1.2. Model components
In Fig. 5, we display the graphical overview of the conceived Temporal Base Model (TBM),6 where the left part models user

preference under week-mode, and the right part models user preference under day-mode. By combining hierarchical neural review
representation and temporal topic modeling through multi-layer neural networks, TBM aims to learn time-sensitive user preference
under week-mode and day-mode time windows (shown in the pink shadow area).

As can be seen from Fig. 5, both week-mode and day-mode user preference modeling have the same input, i.e., the vector
representation of user textual reviews. Based on the hierarchical attention mechanism (review-level attention and window-level
attention), the two parts output time-sensitive user preference under week-mode (𝐡𝑤𝑒𝑒𝑘

𝑢 ) and day-mode (𝐡𝑑𝑎𝑦𝑢 ), respectively. By
concatenating 𝐡𝑤𝑒𝑒𝑘

𝑢 and 𝐡𝑑𝑎𝑦𝑢 as 𝐡𝑢, TBM maps it to the user intrinsic latent representation 𝐩𝑢, through the multi-layer neural network
architecture. Note that 𝐩𝑢 is obtained based on user textual reviews using TLDA model (Zhou et al., 2018), which not only considers
the number of times each word appears in a document (‘‘bag-of-words’’ assumption), but also involves temporal factors, so as to
depict user topic distribution under temporal context (Chen, 2017). In this article, following Zhou et al. (2019), we treat 𝐩𝑢 as the
ground-truth user intrinsic latent representation, so as to guide the learning of time-sensitive user preference. For this purpose, the
concatenation vector 𝐡𝑢 is treated as the input of the multi-layer neural network architecture, and �̂�𝑢 is treated as the output with
𝐩𝑢 being the ground-truth, where each dimension of the vector represents a class. In this way, we transform the user preference
modeling problem into a multi-class classification task.

Input Module. To embed user sentimental textual reviews into low dimensional vector space, we apply the HUAPA model (Wu
et al., 2018) to obtain the embedding of each review. The learned review embedding not only contains user and location properties,
but also encodes the user’s sentiment toward the location, which is suitable for our task. Once the HUAPA model is trained using
our datasets described in Section 3.2, we can obtain a review embedding matrix 𝐖𝑢 for each user 𝑢, where each column 𝐰𝑢

𝑖 ∈ R𝑑

in 𝐖𝑢 represents a review embedding and 𝑑 is the size of review embeddings.
Normalization Module. We keep 𝐖𝑢 fixed in the whole training process of TBM. Above the input module, we employ a trainable

matrix 𝐖𝑡𝑟𝑎𝑛𝑠 ∈ R𝑑×𝑑 to customize the pre-trained review embedding 𝐰𝑢
𝑖 . In this way, the customized review embeddings can be

task oriented. The customized review embedding 𝐞𝑖 for a certain review is normalized according to Eq. (1):

𝐞𝑖 =
𝐖𝑡𝑟𝑎𝑛𝑠 ⋅ 𝐰𝑢

𝑖
‖𝐖𝑡𝑟𝑎𝑛𝑠 ⋅ 𝐰𝑢

𝑖 ‖
(1)

6 An alternative Temporal Base Model based on all 35 time windows is introduced in Section 4.3.
7
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Fig. 5. Temporal Base Model for hierarchical consumption preference modeling. Each grid in the pink shadow area (for example, 𝐡𝑢𝑀𝑜𝑛) represents the time-
sensitive user consumption preference under corresponding time window. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

where ‖ ⋅ ‖ represents the Euclidean norm. By normalizing review embeddings with their corresponding Euclidean norms, the
calculation of inner-product between user and location is equivalent to calculating their cosine similarity.

Hierarchical Attention Module. According to the time stamp associated with each review, we can group reviews into separate
week-mode and day-mode time windows. In this way, we get the review embedding matrix within each time window. The review
embedding matrix of the 𝑡th time window is represented as 𝐃𝑢

𝑡
:

𝐃𝑢
𝑡
=
⎡

⎢

⎢

⎣

...
| | |

𝐞𝑗−1 𝐞𝑗 𝐞𝑗+1
| | |

...
⎤

⎥

⎥

⎦

(2)

here 𝐃𝑢
𝑡
∈ R𝑑×𝐿𝑡 and 𝐞𝑗 ∈ R𝑑 . 𝐿𝑡 is number of reviews within time window 𝑡.

For 𝐃𝑢
𝑡
, the review-level attention mechanism is applied to assign different importance on each review, after which the review

mbeddings in 𝐃𝑢
𝑡

are aggregated in a weighted manner to characterize the corresponding time window. In other words, we linearly
ggregate review embeddings in 𝐃𝑢

𝑡
to represent the time-sensitive user preference for time window 𝑡. To achieve this goal, the

ne-layer self-attention is adopted to compute the attention weight of each review according to Eq. (3):

𝐚𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡𝑎𝑛ℎ(𝐰𝑟
𝑇 ⋅ 𝐃𝑢

𝑡 + 𝐛𝑟)) (3)

here 𝐚𝑡 is a vector containing the weights of each review, 𝐰𝑟 ∈ R𝑑 and 𝐛𝑟 ∈ R1×𝐿𝑡 are the weight vector and bias in the review-level
ttention layer to be learned, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) ensures that the sum of computed weights equals to 1.

Based on the review weight vector 𝐚𝑡, we aggregate reviews within 𝐃𝑢
𝑡

according to Eq. (4):

𝐡𝑢𝑡 =
∑

1≤𝑗≤𝐿𝑡 ,𝐞𝑗∈𝐃𝑢
𝑡

𝑎𝑡𝑗 ⋅ 𝐞𝑗 (4)

here 𝑎𝑡𝑗 is the weight of the 𝑗th review in 𝐃𝑢
𝑡
.

Note that we actually have two different review-level attention layers for week-mode preference modeling and day-mode
reference modeling. For simplicity, we do not discriminate them by giving another couple of equations. Hereafter, we obtain
representations for week-mode user preference and 5 representations for day-mode user preference, as shown in the pink shadow
8

rea of Fig. 5.
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Similarly, we hold that different time windows contribute unequally when characterizing a user. Therefore, we further apply
he window-level attention mechanism to assign different weights on each time windows, after which the time-sensitive user
epresentations can be aggregated to characterize the global user representation under week-mode and day-mode, respectively.
e take week-mode as the example, the attention weight of each time window is computed according to Eq. (5), and we aggregate

ifferent time windows according to Eq. (6):

𝐛𝑤𝑒𝑒𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡𝑎𝑛ℎ(𝐰𝑤
𝑇 ⋅𝐇𝑢 + 𝐛𝑤)) (5)

𝐡𝑤𝑒𝑒𝑘
𝑢 =

∑

𝑗∈{0,1,…,6}
𝑏𝑤𝑒𝑒𝑘
𝑗 ⋅𝐡𝑢𝑗 (6)

where 𝐇𝑢 ∈ R𝑑×7 is the week-mode user preference matrix, 𝐰𝑤 ∈ R𝑑 and 𝐛𝑤 ∈ R1×7 are the weight vector and bias in the window-
level attention layer to be learned, and 𝐡𝑢𝑗 is the 𝑗th time-sensitive user preference in 𝐇𝑢. The obtained vector 𝐡𝑤𝑒𝑒𝑘

𝑢 represents the
global week-mode user preference, following the similar way, the global day-mode user preference 𝐡𝑑𝑎𝑦𝑢 can also be obtained.

Output Module. The concatenation representation 𝐡𝑢 = [𝐡𝑤𝑒𝑒𝑘
𝑢 ⊕ 𝐡𝑑𝑎𝑦𝑢 ] is fed into a multi-layer neural network architecture,

which finally outputs a probability distribution �̂�𝑢:

�̂�𝑢 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃 (𝐡𝑢)) (7)

where 𝑀𝐿𝑃 (⋅) is the multi-layer perceptron function to project the input vector 𝐡𝑢 into the probability distribution �̂�𝑢. For the
activation function in each layer of 𝑀𝐿𝑃 (⋅), we use the 𝑅𝑒𝐿𝑢 function as it yields favorable results. A tentative validation using
Toronto dataset indicates that two fully connected layers are sufficient for this task, as deeper network adds more complexity without
bringing in evident improvement in return.

Loss Function. With user intrinsic latent representation 𝐩𝑢 as ground-truth, we regard user preference modeling as a multi-class
classification task, so that the cross-entropy loss is used to optimize TBM :

𝐿𝑜𝑠𝑠_𝑡𝑏𝑚 = −
∑

𝑢∈

∑

𝑖
𝐩𝑢(𝑖) ⋅ log(�̂�𝑢(𝑖)), ∀𝑖 = 1, 2,… , 𝑍 (8)

where 𝑖 is one of the 𝑍 topics (classes) trained on textual reviews using TLDA (Zhou et al., 2018), and 𝐩𝑢(𝑖) is the probability of
topic 𝑖 in the ground-truth user latent representation 𝐩𝑢.

Model Learning. From bottom up, parameters to be learned in TBM include the matrix 𝐖𝑡𝑟𝑎𝑛𝑠 for review embedding
normalization, the set of weight vectors {𝐰} and biases {𝐛} in the hierarchical attention module, as well as the weight vectors and
biases in the multi-layer neural network architecture. Note that TBM is indeed a feed-forward neural network, all the parameters
in the above loss function are differentiable.

Because we treat user preference learning as a multi-class classification task where user intrinsic temporal topic distribution 𝐩𝑢
is the ground-truth (obtained by TLDA (Zhou et al., 2018)), the training process of TBM is actually a supervised learning problem,
where gradient descent can be applied to optimize the loss function. We employ Adam (Kingma & Ba, 2015) with mini-batch to
train the parameters automatically. Following Wu et al. (2018), the weight matrices (vectors) and biases are initialized according
to the uniform distribution 𝑈 (−0.01, 0.01). We set the initial learning rate of Adam as 0.001, and the batch size is set to 256.

4.2. Location prediction model

Based on the learned time-sensitive user preference, i.e., 𝐡𝑢𝑡 shown in the pink shadow area of Fig. 5, we build the Location
Prediction Model (LPM) which characterizes the interaction between user and location at a given time. The graphical overview of
LPM is shown in Fig. 6. As we can see, LPM is composed of three components, namely, temporal interaction 𝜑(𝑢, 𝑣, 𝑡), geographical
interaction 𝑔(𝑢, 𝑣), as well as social interaction 𝜉(𝑢, 𝑣). The details of each component are explained as follows.

4.2.1. Model components
Input Module. Our aim is to fit user 𝑢’s consumption probability toward location 𝑣 at time 𝑡, therefore, we take each of user 𝑢’s

consumption behavior ⟨𝑢, 𝑣, 𝑡⟩ as the input of LPM. For each input sample ⟨𝑢, 𝑣, 𝑡⟩, we project 𝑡 into day-of-week time window 𝑡𝑑 and
slot-of-day time window 𝑡𝑠, respectively, so as to obtain the time-sensitive user consumption preference, i.e., 𝐡𝑢𝑡𝑑 and 𝐡𝑢𝑡𝑠 , according
to the learned time-sensitive user preference by TBM. As we hold that the functionality of a location drives users’ consumption
behavior, we obtain the user’s consumption topic preference by averaging the location category embeddings in his/her footprints.7
In this way, we obtain user consumption preference toward location categories for week-mode and day-mode, i.e., 𝐮𝐶𝑎𝑡_𝑡𝑑 and 𝐮𝐶𝑎𝑡_𝑡𝑠 ,
respectively.

Meanwhile, for current location 𝑣, we take the average review embeddings associated with 𝑣, so as to capture the latent
representation of 𝑣, i.e., 𝐡𝑣, from the review level. In addition, we use 𝐯𝐶𝑎𝑡 to represent the category embedding of location 𝑣.

Feature Fusion Module. We introduce non-linear fusion layers to fuse the multifaceted contexts.
First, we fuse different kinds of time-sensitive information to capture user 𝑢’s specific preference at time 𝑡. Following Li, Pi, Lin,

Ahmed Khan, Cui (2020) and Li, Wu et al. (2020), the fusion layers take [𝐡𝑢𝑡𝑑 ,𝐡
𝑢
𝑡𝑠
] and [𝐮𝐶𝑎𝑡_𝑡𝑑 ,𝐮𝐶𝑎𝑡_𝑡𝑠 ] as input, and output 𝐡𝑇 𝑒𝑚𝑢 and

7 For the tokenized categories associated with locations, we use the pre-trained 100d Glove word embedding as the word vector, and average the word
9

ectors to get the final location category embedding. The Glove word embeddings can be accessed here: https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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Fig. 6. Location Prediction Model for user consumption location prediction at a given time.

𝐡𝐶𝑎𝑡
𝑢 , which represent user 𝑢’s temporal location preference and consumption topic preference, respectively. The non-linear feature

fusions are described in Eqs. (9) and (10), respectively.

𝐡𝑇 𝑒𝑚𝑢 = 𝑓 (𝐖𝑇 𝑒𝑚 ⋅ [𝐡𝑢𝑡𝑑 ,𝐡
𝑢
𝑡𝑠
]) (9)

𝐡𝐶𝑎𝑡
𝑢 = 𝑓 (𝐖𝐶𝑎𝑡 ⋅ [𝐮𝐶𝑎𝑡_𝑡𝑑 ,𝐮𝐶𝑎𝑡_𝑡𝑠 ]) (10)

where 𝐖𝑇 𝑒𝑚,𝐖𝐶𝑎𝑡 ∈ R𝑑×𝑑 are the transformation matrix to be learned, 𝑓 (⋅) is the non-linear function. Note that we just omit the
bias term in the fusion layer for the convenience of notation.

Next, after 𝐡𝑇 𝑒𝑚𝑢 and 𝐡𝐶𝑎𝑡
𝑢 are derived, we use another one-layer fully connected neural network to fuse them (Eq. (11)). In this

way, we get user 𝑢’s global latent representation at time 𝑡, i.e., 𝐮𝑓𝑡 .

𝐮𝑓𝑡 = 𝑓 (𝐖𝟏
𝑓 × [𝐡𝑇 𝑒𝑚𝑢 ,𝐡𝐶𝑎𝑡

𝑢 ]) (11)

where 𝐖𝟏
𝑓 is the transformation matrix to be learned. Please note that, to merge heterogeneous information, we have multiple

fusion options, one of which is to concatenate them by setting 𝐖𝟏
𝑓 as the identity matrix and setting 𝑓 (⋅) as the concatenation

function.
In the end, we can also derive location 𝑣’s global latent representation 𝐯𝑓 , which is time-independent. We present the fusion

rocess using Eq. (12):

𝐯𝑓 = 𝑓 (𝐖𝟐
𝑓 ⋅ [𝐡𝑣, 𝐯𝐶𝑎𝑡]) (12)

here 𝐖𝟐
𝑓 is the transformation matrix to be learned. In this way, we can align user latent representation 𝐮𝑓𝑡 and location latent

epresentation 𝐯𝑓 as both of them are derived using textual review and categorical information.
Interaction Module. For temporal interaction between user 𝑢 and location 𝑣 at time 𝑡, we apply cosine similarity to indicate

he normalized temporal visit probability of user 𝑢 toward location 𝑣:

𝜑(𝑢, 𝑣, 𝑡) = 𝐮𝑓𝑡 ⊙ 𝐯𝑓 (13)

here ⊙ stands for the inner product.
For geographical interaction, we aim to enable user 𝑢’s historical consumption trajectory to exert more influence on nearby

nvisited locations. According to Ma et al. (2018), we adopt kernel density estimation (KDE) to incorporate geographical influence.
pecifically, given user 𝑢’s consumption location set 𝑢 and a location 𝑣, we compute a normalized distance factor for 𝑣 according
o Eq. (14):

𝑔(𝑢, 𝑣) = 𝑝(𝑣|𝑢) = 1
𝛿|𝑢

|

∑

𝑣𝑖∈𝑢
𝜙(

𝑑𝑖𝑠𝑡(𝑣𝑖, 𝑣)
𝛿

) (14)

where 𝑑𝑖𝑠𝑡(𝑥, 𝑦) represents the geographical distance between location 𝑥 and location 𝑦, 𝜙(⋅) is the standard Gaussian distribution
function, 𝛿 is the bandwidth parameter and we set 𝛿 = 1.06𝛿|𝑢

|

1
5 according to Zhang and Chow (2015).

For social interaction, we consider the user’s social friends as another indicator to strengthen the predictive power of LPM.
Specifically, for each friend 𝑎 of user 𝑢, we compute the frequency of location 𝑣 in 𝑎’s footprints 𝑎, multiplied by the normalized
counter-based similarity between 𝑢 and 𝑎, so as to quantify the social influence of 𝑎 to 𝑢 with regard to location 𝑣. The normalized
social influence is quantified according to Eq. (15):

𝜉(𝑢, 𝑣) =
∑

𝑎∈ (𝑢) 𝑠𝑖𝑚(𝑢, 𝑎) ⋅ 𝑓𝑟𝑒𝑞(𝑎, 𝑣)
∑ (15)
10

𝑎∈ (𝑢) 𝑠𝑖𝑚(𝑢, 𝑎)
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where  (𝑢) is the social neighbors of user 𝑢, 𝑠𝑖𝑚(𝑢, 𝑎) indicates the similarity between 𝑢 and 𝑎, and 𝑓𝑟𝑒𝑞(𝑎, 𝑣) stands for the frequency
of 𝑣 in 𝑎’s footprints 𝑎.

Output Module. Based on the afore-mentioned three types of interactions between user 𝑢 and location 𝑣, we derive the
consumption probability of user 𝑢 toward location 𝑣 at time 𝑡 by a scoring function:

�̂�(𝑢, 𝑣, 𝑡) = 𝜑(𝑢, 𝑣, 𝑡) + 𝜂 ⋅ 𝑔(𝑢, 𝑣) + 𝜆 ⋅ 𝜉(𝑢, 𝑣) (16)

where 𝜂 and 𝜆 are weighting parameters indicating the influential levels of geographical interaction and social interaction,
respectively.

4.2.2. Model training
In this article, we train LPM with a learning-to-rank method, which is widely used in location prediction research (Gao

et al., 2018; Guan et al., 2019). Specifically, we employ Bayesian Personalized Ranking (BPR) (Rendle, Freudenthaler, Gantner,
& Schmidt-Thieme, 2009) to optimize LPM, as BPR can make use of the unobserved time-sensitive ⟨𝑢, 𝑣⟩ interactions by learning a
pair-wise ranking loss in the training process of LPM. Given an observed triple ⟨𝑢, 𝑣+, 𝑡⟩ (generally called a positive example), and a
corresponding unobserved triple ⟨𝑢, 𝑣−, 𝑡⟩ (generally called a negative example), where the former means user 𝑢 visits location 𝑣+ at
time 𝑡 and the latter means user 𝑢 does not visit location 𝑣− at time 𝑡, BPR should give a higher consumption probability �̂�(𝑢, 𝑣+, 𝑡)
for ⟨𝑢, 𝑣+, 𝑡⟩ than �̂�(𝑢, 𝑣−, 𝑡) for ⟨𝑢, 𝑣−, 𝑡⟩. Following Gao et al. (2018), the loss function with a regularization term for optimizing LPM
is described below:

𝐿𝑜𝑠𝑠_𝑙𝑝𝑚 = −
∑

𝑢∈

∑

⟨𝑣+ ,𝑣−⟩∈ℜ𝑢

ln 𝜎(�̂�(𝑢, 𝑣+, 𝑡) − �̂�(𝑢, 𝑣−, 𝑡)) + 𝜀‖𝛩‖

2 (17)

where 𝜎(⋅) is the sigmoid function, 𝛩 is the parameters of the non-linear fusion layers, 𝜀 is the regularization coefficient.
As we employ the BPR loss function, it is necessary to retrieve negative samples for each positive sample. Specifically, for each

positive sample ⟨𝑢, 𝑣+, 𝑡⟩, we randomly sample 10 negative samples ⟨𝑢, 𝑣−, 𝑡⟩. We use ℜ𝑢 to represent user 𝑢’s training set, which
consists of positive samples and negative samples. The training set for all users is denoted as ℜ. Note that for each epoch during
model training, we would re-sample negative samples for each positive sample, so that each negative sample only gives very weak
negative signal in the training process. Parameters to be learned in LPM include the set of transformation matrices in feature fusion
layers. As LPM is also a feed-forward neural network, where all the parameters in the loss function are differentiable, we apply
Adam (Kingma & Ba, 2015) with mini-batch to train the parameters automatically. The parameter set is initialized according to
the uniform distribution 𝑈 (−0.01, 0.01), and the batch size is set to 256. Algorithm 1 below illustrates the whole training process of
LPM.
Algorithm 1: Training algorithm of LPM

Input : users’ training set ℜ
Output: the parameter set 𝛩 of LPM.

1 initialize the parameter set 𝛩;
2 while exceed(maximum number of iterations)==FALSE do
3 Randomly select a batch of training instances ℜ𝑏;
4 for each user 𝑢 in ℜ𝑏 do
5 for each pair ⟨𝑢, 𝑣+, 𝑡⟩ and ⟨𝑢, 𝑣−, 𝑡⟩ of user 𝑢 in ℜ𝑏 do
6 compute the consumption probability �̂�(𝑢, 𝑣+, 𝑡) and �̂�(𝑢, 𝑣−, 𝑡), according to Eq. (16);
7 end
8 end
9 find 𝛩 minimizing the objective function (Eq. (17)) with ℜ𝑏;

10 end
11 return the parameter set 𝛩

4.2.3. User consumption location prediction
Once LPM is trained, we can predict a user’s consumption location at a given time by producing a top-𝐾 location list. Specifically,

or user 𝑢 and the designated time 𝑡𝑔𝑖𝑣𝑒𝑛, we compute the consumption probability �̂�(𝑢, 𝑣, 𝑡𝑔𝑖𝑣𝑒𝑛) for each candidate location 𝑣, and
elect the locations with top-𝐾 probabilities as the prediction result. Algorithm 2 below illustrates the whole prediction process.

.3. An alternative to temporal base model

In addition to the proposed Temporal Base Model in Section 4.1, we introduce an alternative model that incorporates all the 35
ime windows, the graphical framework of the model is shown in Fig. 7. In this case, after the model is trained, we can directly get
ime-sensitive user preference 𝐡𝑇 𝑒𝑚𝑢 and 𝐡𝐶𝑎𝑡

𝑢 without the first two non-linear fusion layers in LPM. The way to obtain user 𝑢’s global
atent representation 𝐮𝑓𝑡 as well as location 𝑣’s global latent representation 𝑣𝑓 is the same to Eqs. (11) and (12), respectively.

To distinguish the two models, we name the Temporal Base Model proposed in Section 4.1 as TBM1, and the model proposed
ere as TBM2. For TBM1, the sizes of the last two fully-connected layers are empirically set as 128 and 64. For TBM2, as it does
ot involve the concatenation operation, we set them as 64 and 32, respectively. The predictive performance of these two models
11

ill be compared in the following section.
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Algorithm 2: User consumption location prediction algorithm
Input : 𝑢, 𝑡𝑔𝑖𝑣𝑒𝑛, 𝑢,  ,  (𝑢), 𝛩, 𝐾.
Output: the predicted top-𝐾 list 𝐿.

1 transform time 𝑡𝑔𝑖𝑣𝑒𝑛 into 𝑡𝑑 and 𝑡𝑠;
2 obtain time-sensitive user preference 𝐡𝑢𝑡𝑑 , 𝐡𝑢𝑡𝑠 , 𝐮

𝐶𝑎𝑡_𝑡𝑑 and 𝐮𝐶𝑎𝑡_𝑡𝑠 ;
3 for each candidate location 𝑣 ∈  do
4 compute 𝜑(𝑢, 𝑣, 𝑡𝑔𝑖𝑣𝑒𝑛) according to Eq. (13);
5 compute 𝑔(𝑢, 𝑣) according to Eq. (14);
6 compute 𝜉(𝑢, 𝑣) according to Eq. (15);
7 compute the consumption probability �̂�(𝑢, 𝑣, 𝑡𝑔𝑖𝑣𝑒𝑛) according to Eq. (16);
8 end
9 sort the candidate locations in a descending order;

10 produce the prediction list 𝐿=top-𝐾();
11 return 𝐿

Fig. 7. An alternative Temporal Base Model based on all 35 time windows.

5. Experiments

We carry out the experiments on a Dell workstation with dual processors (2 × Intel Xeon E5 @ 2.10 GHz), four graphic processing
units (NVIDIA TITAN Xp, 12GB), and 188GB RAM. The operating system of the workstation is 64-bit Ubuntu 16.04. All the codes
are written in Python 3.7 with the deep learning framework PyTorch8 1.1.0.

The experiment is based on train–validation–test mode. For each user 𝑢 in each dataset described in Section 3.2, we use the
chronologically former 80% footprints in 𝑢 for training, the middle 10% for validating, and the last 10% for testing. We conduct
xtensive experiments using three real-world Yelp datasets to answer the following four questions (RQ1 ∼ RQ4), which aim at
erifying the effectiveness of the proposed two-stage framework:

• RQ1: How many topics should be assigned on each dataset for the TLDA model?
• RQ2: Which Temporal Base Model performs better when combined with the Location Prediction Model?
• RQ3: How does the two-stage framework perform compared to other state-of-the-art models?
• RQ4: How do the key factors in LPM impact the performance of our prediction framework?

.1. Evaluation metrics

According to Xu, Fu et al. (2020), which reviews various evaluation metrics used for user location prediction, we select three
etrics from different aspects to verify the predictive performance of the two-stage framework.

8 https://www.pytorch.org/
12

https://www.pytorch.org/


Information Processing and Management 58 (2021) 102715S. Xu et al.
Fig. 8. Coherence value scores for different number of topics among three datasets.

The first metric is 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝐾 (abbreviated as 𝐴𝑐𝑐@𝐾), which measures the ratio of successfully predicted locations in the
top-𝐾 list (Feng et al., 2018; Xu et al., 2021). The calculation method for 𝐴𝑐𝑐@𝐾 is as follows:

𝐴𝑐𝑐@𝐾 = #ℎ𝑖𝑡@𝐾
|𝑇 𝑒𝑠𝑡|

(18)

where #ℎ𝑖𝑡@𝐾 denotes the number of times that we successfully predict in the top-𝐾 list. |𝑇 𝑒𝑠𝑡| denotes the number of tests, i.e., the
number of test cases.

The second metric is Average Percentile Rank (APR), which considers the rank of correctly predicted location in the top-𝐾
list (Cao et al., 2018). The intended purpose of APR metric is that: the higher the rank of ground-truth location in the list, the larger
the 𝐴𝑃𝑅 metric value, and vice versa. For this purpose, Percentile Rank (PR) is firstly calculated for each single test as follows:

𝑃𝑅 =
|| − 𝑟𝑎𝑛𝑘(𝑘)

||
(19)

where || is the size of candidate location set, and 𝑟𝑎𝑛𝑘(𝑘) is the rank of the ground-truth location in the sorted list. Specifically, as
there are too many unvisited locations for each user, to reduce the computational cost, for each test case we randomly select 100
unvisited locations and combine them with the positive location (i.e., || = 101). We repeat this procedure 10 times and report the
average result of 𝑃𝑅. Finally, we average all the test cases to calculate 𝐴𝑃𝑅 metric.

The third metric is coverage ratio, which measures the proportion of the users who are given at least one correct prediction with
regard to 𝐴𝑐𝑐@𝐾. This metric is often used to measure the usability of a location prediction model for different user groups.

5.2. Baseline models

As we aim to predict where a user will consume at a given time in the future, most of the existing studies (for example, the
RNN-based models) concerning user next location prediction cannot be used. As a consequence, we compare the proposed two-
stage framework with the following competitive approaches that involve exact time as the temporal context for user visit location
prediction.

• Random Embedding: This is a simple baseline embedding method, which uses the randomly initialized vectors for the input
of LPM.

• Score_Rank (Cao et al., 2018): This model fuses a set of hand-crafted features including user mobility feature, global popularity
feature, and temporal feature to design a supervised learning framework. It combines a classification model and a scoring model
to calculate a user’s visit probability toward a location at the given time.
13
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• UCGT (Yin et al., 2016): This is a Bayesian generative model that characterizes the generation of user check-ins within GSNs.
Users sharing similar spatial–temporal topics are firstly clustered into communities. Based on the discovered communities,
given a user 𝑢 and a time slot 𝑡, we can estimate the probability of 𝑢 visiting each candidate location 𝑣 through a probability
distribution.

• STELLAR (Zhao et al., 2016): This is a tensor factorization based ranking model which learns a scoring function to evaluate
the probability of a user visiting a location at a given time. Although it is conceived for predicting a user’s next visit location,
we can use it in our task by removing the sequential influence between two successive check-ins in the testing phase.

• CAPE (Chang et al., 2018): Based on a hierarchical embedding strategy, this model learns location embeddings using both
textual contents and temporal–spatial context in user trajectories. We use the learned location embeddings as the input of
LPM.

• Venue2Vec (Xu, Cao et al., 2020): By treating each location in the sampled user trajectories as a word, this model learns
location embedding based on Skip-gram model. Then, users’ preference can be estimated by averaging all location embeddings
in a specific time window. For location prediction, a distance factor using kernel density estimation is added to the similarity
between the user and a candidate location.

• LBSN2Vec (Yang et al., 2019b): This is the state-of-the-art model for user visit location prediction at a given time. It conceives
a novel random walk strategy to jointly sample friendships and check-in hyper-edges from the GSN hyper-graph, and then
propose to learn node embeddings from hyper-edges by preserving the cosine proximity between nodes. Based on the learned
user embedding, time slot embedding and POI embedding, it computes two similarities, one between the user and the POI,
and one between the time slot and the POI. Then the two similarities are added up to represent the final preference score of
the user toward a location.

5.3. Experimental settings

For training TBM, we empirically set the size of review embedding 𝑑 = 128, and set the size of location category embedding as
100. Depth of the multi-layer neural network architecture that maps 𝐡𝑢 to �̂�𝑢 is set to 2. The optimal size of user intrinsic preference
𝐩𝑢 will be determined by experiments. The maximum number of reviews within each time window is set to 50. Parameters (i.e., the
normalization matrix 𝐖𝑡𝑟𝑎𝑛𝑠, the set of weight vectors {𝐰} and biases {𝐛} in the hierarchical attention layers) are initialized according
to the uniform distribution 𝑈 (−0.01, 0.01). The batch size is set to 256. The initial learning rate of Adam is 0.001.

For training LPM, we employ a maximum of 500 epochs with early stopping strategy. For each training sample ⟨𝑢, 𝑣+, 𝑡⟩, we
randomly choose 10 negative samples ⟨𝑢, 𝑣−, 𝑡⟩ in order to optimize the BPR loss. Parameters (i.e., {𝐖} in the non-linear fusion
layers) are initialized according to the uniform distribution 𝑈 (−0.01, 0.01). The batch size is set to 256. The initial learning rate of
Adam is 0.001. The weighting parameters for geo-influence 𝜂 and social relation 𝜆 in Eq. (16) will be discussed in the experiments
to find the best combination. In the end, for the regularization parameter 𝜀 in Eq. (17), we determine the optimal value by grid
earch in the range of {0.001, 0.01, 0.1}.

The parameters for the baseline approaches are initialized as in the corresponding papers, and are then carefully tuned to achieve
ptimal performance.

.4. Empirical analysis on user intrinsic representation learning(RQ1)

As we emphasize in Section 4.1, the key part of TBM is the user intrinsic latent representation 𝐩𝑢, which is taken as the ground-
ruth for hierarchical user preference modeling. To determine the size of 𝐩𝑢, each user’s textual reviews are combined into one

document, and the whole corpus is fed into TLDA (Zhou et al., 2018) to obtain the topic distribution of each user.
In order to find out the optimal number of topics for each dataset, we plot the coherence value (CV) curve (Röder, Both, &

Hinneburg, 2015) among different number of topics (Fig. 8). Technically, the higher the CV score, the better the clustering effect
of topic modeling. Based on the CV curves shown in Fig. 8, we empirically select 20, 25 and 30 as the optimal number of topics for
Toronto dataset, Phoenix dataset and Las Vegas dataset, respectively. As a consequence, the size of 𝐩𝑢 for each dataset is determined
as 20, 25 and 30, respectively. As we regard the learning of TBM as a multi-class classification task, this means the best dimensions
i.e., the number of classes) of user intrinsic embedding are 20, 25 and 30 for three cities in our datasets.

.5. Performance comparison between TBM1 and TBM2 (RQ2)

Note that the two-stage prediction framework is indeed a hierarchical pipeline, where the Temporal Base Model learns the time-
sensitive user latent representation, after which the Location Prediction Model learns the scoring function to calculate a user’s
consumption probability toward a location at a given time. For clarity, we denote the two-stage framework based on TBM1 as
TBM1_LPM, and denote the two-stage framework based on TBM2 as TBM2_LPM.

In order to compare the predictive performance of TBM1 and TBM2, we should actually train TBM1_LPM and TBM2_LPM,
respectively, and then quantify the prediction accuracy of these two models. To ensure the comprehensiveness of comparison, we
need to obtain the prediction accuracy by traversing all possible hyper-parameters, such as the geo-influence weight 𝜂 and social
weight 𝜆 in Eq. (16), and the regularization coefficient 𝜀 in Eq. (17). For clarity, we use 𝐴𝑐𝑐@10 as the evaluation metric, and
tune 𝜂 and 𝜆 by grid search from 0 to 1 with step 0.1. The experimental results using three datasets are plotted in Fig. 9, where
the regularization parameter 𝜀 is set to 0.001, because this value generally works well on all datasets. As can be seen in Fig. 9, no
14
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Fig. 9. 𝐴𝑐𝑐@10 values along with different 𝜂 and 𝜆 using three datasets. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

matter which dataset is used, the prediction accuracy of TBM1_LPM is significantly greater than that of TBM2_LPM. This observation

can be explained from two aspects.
15
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Table 3
𝐴𝑐𝑐@𝐾 results of various models where the best results are highlighted using bold font.

Toronto Phoenix Las Vegas

𝐴𝑐𝑐@5 𝐴𝑐𝑐@10 𝐴𝑐𝑐@20 𝐴𝑐𝑐@5 𝐴𝑐𝑐@10 𝐴𝑐𝑐@20 𝐴𝑐𝑐@5 𝐴𝑐𝑐@10 𝐴𝑐𝑐@20

TBM1_LPM 0.0233 0.0291 0.0334 0.0276 0.0347 0.0403 0.0295 0.0394 0.0461
Random 0.0104 0.0111 0.0157 0.0122 0.0165 0.0264 0.0138 0.0226 0.0271
Score_Rank 0.0146 0.0182 0.0249 0.0185 0.0233 0.0292 0.0233 0.0294 0.0359
UCGT 0.0138 0.0185 0.0242 0.0173 0.0216 0.0278 0.0205 0.0281 0.0347
STELLAR 0.0126 0.0164 0.0231 0.0162 0.0199 0.0256 0.0187 0.0264 0.0322
CAPE 0.0152 0.0187 0.0253 0.0188 0.0242 0.0285 0.0236 0.0291 0.0366
Venue2Vec 0.0182 0.0232 0.0266 0.0214 0.0257 0.0331 0.0231 0.0310 0.0364
LBSN2Vec 0.0195 0.0264 0.0282 0.0247 0.0283 0.0358 0.0254 0.0323 0.0387

Table 4
𝐴𝑃𝑅 results of various models where the best results are highlighted using bold
font.

Toronto Phoenix Las Vegas

TBM1_LPM 0.384 0.442 0.454
Random 0.257 0.296 0.306
Score_Rank 0.379 0.408 0.433
UCGT 0.373 0.394 0.418
STELLAR 0.307 0.325 0.337
CAPE 0.364 0.402 0.432
Venue2Vec 0.366 0.416 0.435
LBSN2Vec 0.371 0.439 0.451

First, based on the model structures of TBM1 and TBM2 (Figs. 5 and 7), as TBM1 has much fewer time windows than TBM2,
each time window of TBM1 has much more training data than that of TBM2, which allows TBM1 to learn user preference more
omprehensively. By contrast, training data in each time window of TBM2 is much sparser, where user reviews maybe missing
n a few time windows, making it difficult for the model to fully capture user preference. Second, the Location Prediction Model
n TBM1_LPM has two more non-linear fusion layers than that in TBM2_LPM, which enables TBM1_LPM to be more powerful in
xtracting high-level features.

In light of the findings above, we use TBM1_LPM as the final two-stage framework for user consumption location prediction.
ased on Fig. 9, we configure the weighting hyper-parameters 𝜂 and 𝜆 for TBM1_LPM to achieve the best performance: 𝜂 = 0.1,
= 0.8 for Toronto dataset; 𝜂 = 0.2, 𝜆 = 0.9 for Phoenix dataset ; 𝜂 = 0.1, 𝜆 = 0.9 for Las Vegas dataset.

.6. Performance comparison between TBM1_LPM and baseline models (RQ3)

We compare the predictive performance of TBM1_LPM with the baseline models. For better illustration, we summarize the results
n 𝐴𝑐𝑐@𝐾 metric (𝐾 = {5, 10, 20}) in Table 3, and the results on 𝐴𝑃𝑅 metric in Table 4, which represent the prediction accuracy
nd ranking capacity of different models, respectively. All parameters in the baseline models are carefully tuned to ensure the best
erformance and fair comparison.

As we can see from Table 3, in terms of 𝐴𝑐𝑐@𝑁 metric, the proposed two-stage framework TBM1_LPM consistently outperforms
ther models with obvious advantage on three datasets. Among the baseline models, LBSN2Vec model has the closest performance
o TBM1_LPM, followed by Venue2Vec. As LBSN2Vec model preserves multiple types of interactions among user vertices, location
ertices and time vertices, it can capture the time-sensitive user preference more accurately than Venue2Vec. However, LBSN2Vec
odel only takes into account the topology information of GSNs, which limits its capacity to perceive users’ sentiment toward

ocations. Compared with these models, TBM1_LPM learns time-sensitive user consumption preference from sentimental textual
eviews, spatial context, as well as other side information, which enables it to have more powerful ability in feature fusion. In terms
f 𝐴𝑐𝑐@5, which is widely used to evaluate a location prediction model in relevant research Feng et al. (2018) and Gao et al. (2019),
BM1_LPM exceeds the most competitive model LBSN2Vec by 19.4%, 11.7% and 16.1% on Toronto, Phoenix and Las Vegas dataset,
espectively, which means TBM1_LPM can be competitive in practical applications.

From Table 4, with regard to 𝐴𝑃𝑅 metric which takes the position of the ground-truth location into account, TBM1_LPM also
erforms desirably as it can generally rank the correct locations at the highest positions in most cases. Note that this means we are
ble to rank a location where a user would consume in the future at a higher position compared with other models, it is indeed a
emarkable performance as there are tens of thousands candidate locations in a city.

We also notice that the evaluation metrics based on Phoenix and Las Vegas datasets are basically higher than that of Toronto
ataset. One possible explanation is that the average visitors per location in Phoenix and Las Vegas are larger than that of Toronto,
ndicating that users in Phoenix and Las Vegas are more likely to visit constant venues, which means users in these two cities have
16
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Table 5
Comparison in terms of coverage ratio. Best performance is in boldface.

Toronto Phoenix Las Vegas

TBM1_LPM 0.931 0.936 0.944
Random 0.916 0.919 0.928
Score_Rank 0.923 0.934 0.936
UCGT 0.920 0.926 0.931
STELLAR 0.922 0.924 0.935
CAPE 0.928 0.926 0.933
Venue2Vec 0.926 0.934 0.937
LBSN2Vec 0.928 0.934 0.939

We further compare the coverage ratio of different models, and the results are summarized in Table 5. Note that this metric
easures the proportion of users who are given at least one correct prediction in terms of 𝐴𝑐𝑐@10, which actually measures the

usability of different models for GSN users. Based on Table 5, we notice that in each dataset there are about 7% users who cannot
be given any correct prediction. When rechecking the trajectories of selected users, we find that the time interval between two
successive consumption behaviors is often very large, thus it is hard to discover intuitive consistency within their trajectories. Based
on our observation, such users do exist in Geo-Social Networks, who do not use location-based service frequently and never revisit
a location (such as a restaurant). In general, as TBM1_LPM consistently has the largest coverage ratio among all models, we believe
that it has fine usability in consumption location prediction for GSN users.

5.7. Ablation study on TBM1_LPM (RQ4)

According to Eq. (16), TBM1_LPM not only incorporates textual reviews and categorical information, but also fuses geo-influence
and social relation. In the following, we compare the predictive performance of the full location prediction framework (Eq. (16))
with its weakened version (Eq. (16) removing geographical and social interactions). For clarity, we name them as Full_LPM and
Weak_LPM, respectively. Again, we use 𝐴𝑐𝑐@𝐾 metric for comparison where 𝐾 = {5, 10, 20}, and the results are plotted in
Fig. 10.

It is clear that the full framework Full_LPM performs better than its weakened version Weak_LPM with large margin. For one
thing, both geo-influence and social relation play an important role in reducing the size of candidate locations, which in turn makes
the prediction result closer to the user’s true consumption preference. For another thing, Full_LPM incorporates various kinds of
information, including textual content, categorical information, geographical influence as well as social relation, which effectively
improves the learning capacity for users’ preference. Based on the results, we believe that the fusion of multi-modal GSN data can
mutually reinforce each other under the designed framework, and will finally improve the prediction performance.

6. Conclusion

In this article, we study the problem of user consumption location prediction using geo-social networking data. In view of the
shortcomings of current literatures, we present a two-stage framework that consists of the Temporal Base Model (TBM) and the
Location Prediction Model (LPM) for fine-grained user location prediction. Based on three real-world datasets, we conduct extensive
experiments to verify the effectiveness of the proposed approach.

As for future work, we consider to extend current studies from two aspects. First, as we focus on geo-social networks where
social influence should vary with the geographic distance among users in the real situation, we plan to characterize a user’s next
movement by considering not only the similarity between the user and his/her friends, but also the geo-distance and time-interval
between the user’s latest consumption behavior and his/her friends’ latest consumption behavior. Second, we note that existing
approaches are basically designed for in-town user location prediction, however, a user may frequently visit places far away from
home (hometown), how to properly predict a user’s out-of-town consumption location remains to be studied in our future work.
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Fig. 10. 𝐴𝑐𝑐@𝐾 comparison between the full framework and weakened framework.
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